These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 37511543)

  • 1. The Advances and Limitations of the Determination and Applications of Water Structure in Molecular Engineering.
    Zsidó BZ; Bayarsaikhan B; Börzsei R; Szél V; Mohos V; Hetényi C
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular recognition of RNA: challenges for modelling interactions and plasticity.
    Fulle S; Gohlke H
    J Mol Recognit; 2010; 23(2):220-31. PubMed ID: 19941322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculating Water Thermodynamics in the Binding Site of Proteins - Applications of WaterMap to Drug Discovery.
    Cappel D; Sherman W; Beuming T
    Curr Top Med Chem; 2017; 17(23):2586-2598. PubMed ID: 28413953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular modeling of hydration in drug design.
    Mancera RL
    Curr Opin Drug Discov Devel; 2007 May; 10(3):275-80. PubMed ID: 17554853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards predictive ligand design with free-energy based computational methods?
    Foloppe N; Hubbard R
    Curr Med Chem; 2006; 13(29):3583-608. PubMed ID: 17168725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 3. The free energy contribution of structural water molecules in HIV-1 protease complexes.
    Fornabaio M; Spyrakis F; Mozzarelli A; Cozzini P; Abraham DJ; Kellogg GE
    J Med Chem; 2004 Aug; 47(18):4507-16. PubMed ID: 15317462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydration properties of ligands and drugs in protein binding sites: tightly-bound, bridging water molecules and their effects and consequences on molecular design strategies.
    García-Sosa AT
    J Chem Inf Model; 2013 Jun; 53(6):1388-405. PubMed ID: 23662606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of water molecules in computational drug design.
    de Beer SB; Vermeulen NP; Oostenbrink C
    Curr Top Med Chem; 2010; 10(1):55-66. PubMed ID: 19929830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AcquaAlta: a directional approach to the solvation of ligand-protein complexes.
    Rossato G; Ernst B; Vedani A; Smiesko M
    J Chem Inf Model; 2011 Aug; 51(8):1867-81. PubMed ID: 21714532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in the Treatment of Explicit Water Molecules in Docking and Binding Free Energy Calculations.
    Hu X; Maffucci I; Contini A
    Curr Med Chem; 2019; 26(42):7598-7622. PubMed ID: 29756561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing inhomogeneous solvation theory in structure-based ligand discovery.
    Balius TE; Fischer M; Stein RM; Adler TB; Nguyen CN; Cruz A; Gilson MK; Kurtzman T; Shoichet BK
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):E6839-E6846. PubMed ID: 28760952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
    Katkova EV; Onufriev AV; Aguilar B; Sulimov VB
    J Mol Graph Model; 2017 Mar; 72():70-80. PubMed ID: 28064081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporating replacement free energy of binding-site waters in molecular docking.
    Sun H; Zhao L; Peng S; Huang N
    Proteins; 2014 Sep; 82(9):1765-76. PubMed ID: 24549784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining solvent thermodynamic profiles with functionality maps of the Hsp90 binding site to predict the displacement of water molecules.
    Haider K; Huggins DJ
    J Chem Inf Model; 2013 Oct; 53(10):2571-86. PubMed ID: 24070451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic Characterization of Hydration Sites from Integral Equation-Derived Free Energy Densities: Application to Protein Binding Sites and Ligand Series.
    Güssregen S; Matter H; Hessler G; Lionta E; Heil J; Kast SM
    J Chem Inf Model; 2017 Jul; 57(7):1652-1666. PubMed ID: 28565907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in Docking.
    Sulimov VB; Kutov DC; Sulimov AV
    Curr Med Chem; 2019; 26(42):7555-7580. PubMed ID: 30182836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvation methods for protein-ligand docking.
    Bienstock RJ
    Methods Mol Biol; 2015; 1289():3-12. PubMed ID: 25709028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AutoDock-GIST: Incorporating Thermodynamics of Active-Site Water into Scoring Function for Accurate Protein-Ligand Docking.
    Uehara S; Tanaka S
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27886114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grid inhomogeneous solvation theory: hydration structure and thermodynamics of the miniature receptor cucurbit[7]uril.
    Nguyen CN; Young TK; Gilson MK
    J Chem Phys; 2012 Jul; 137(4):044101. PubMed ID: 22852591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations.
    Cournia Z; Allen B; Sherman W
    J Chem Inf Model; 2017 Dec; 57(12):2911-2937. PubMed ID: 29243483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.