These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 37511649)
41. Improving the Accuracy of Saffron Adulteration Classification and Quantification through Data Fusion of Thin-Layer Chromatography Imaging and Raman Spectral Analysis. Dai H; Gao Q; Lu J; He L Foods; 2023 Jun; 12(12):. PubMed ID: 37372533 [TBL] [Abstract][Full Text] [Related]
42. Comparison of Spectroscopic Techniques for Determining the Peroxide Value of 19 Classes of Naturally Aged, Plant-Based Edible Oils. Ottaway JM; Chance Carter J; Adams KL; Camancho J; Lavine BK; Booksh KS Appl Spectrosc; 2021 Jul; 75(7):781-794. PubMed ID: 33522275 [TBL] [Abstract][Full Text] [Related]
44. In situ near-infrared (NIR) versus high-throughput mid-infrared (MIR) spectroscopy to monitor biopharmaceutical production. Sales KC; Rosa F; Sampaio PN; Fonseca LP; Lopes MB; Calado CR Appl Spectrosc; 2015 Jun; 69(6):760-72. PubMed ID: 25955848 [TBL] [Abstract][Full Text] [Related]
45. Rapid detection of hepatitis B virus DNA level based on interval-point data fusion of infrared spectra. Chen J; Ma J; Han X; Zhou Y; Xie B; Huang F; Li L; Li Y J Biophotonics; 2023 Mar; 16(3):e202200251. PubMed ID: 36177762 [TBL] [Abstract][Full Text] [Related]
46. Fusion of three spectroscopic techniques for prediction of fatty acid in processed lamb. Robert C; Bain WE; Craigie C; Hicks TM; Loeffen M; Fraser-Miller SJ; Gordon KC Meat Sci; 2023 Jan; 195():109005. PubMed ID: 36272312 [TBL] [Abstract][Full Text] [Related]
47. Investigation of Water Interaction with Polymer Matrices by Near-Infrared (NIR) Spectroscopy. Moll V; Beć KB; Grabska J; Huck CW Molecules; 2022 Sep; 27(18):. PubMed ID: 36144616 [TBL] [Abstract][Full Text] [Related]
48. Monitoring osteoarthritis progression using near infrared (NIR) spectroscopy. Afara IO; Prasadam I; Arabshahi Z; Xiao Y; Oloyede A Sci Rep; 2017 Sep; 7(1):11463. PubMed ID: 28904358 [TBL] [Abstract][Full Text] [Related]
49. Characterisation of PDO olive oil Chianti Classico by non-selective (UV-visible, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques. Casale M; Oliveri P; Casolino C; Sinelli N; Zunin P; Armanino C; Forina M; Lanteri S Anal Chim Acta; 2012 Jan; 712():56-63. PubMed ID: 22177065 [TBL] [Abstract][Full Text] [Related]
50. Fusion of Near-Infrared and Raman Spectroscopy for In-Line Measurement of Component Content of Molten Polymer Blends. Zhu S; Song Z; Shi S; Wang M; Jin G Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31398890 [TBL] [Abstract][Full Text] [Related]
51. A comparative study of MIR and NIR spectral models using ball-milled and sieved soil for the prediction of a range soil physical and chemical parameters. Bachion de Santana F; Daly K Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121441. PubMed ID: 35667135 [TBL] [Abstract][Full Text] [Related]
52. Comparison of Spectroscopic Techniques Combined with Chemometrics for Cocaine Powder Analysis. Eliaerts J; Meert N; Dardenne P; Baeten V; Pierna JF; Van Durme F; De Wael K; Samyn N J Anal Toxicol; 2020 Dec; 44(8):851-860. PubMed ID: 33313888 [TBL] [Abstract][Full Text] [Related]
53. Bayesian Fusion Model Enhanced Codfish Classification Using Near Infrared and Raman Spectrum. Xu Y; Koidis A; Tian X; Xu S; Xu X; Wei X; Jiang A; Lei H Foods; 2022 Dec; 11(24):. PubMed ID: 36553842 [TBL] [Abstract][Full Text] [Related]
54. Raman spectroscopy in combination with background near-infrared autofluorescence enhances the in vivo assessment of malignant tissues. Huang Z; Lui H; McLean DI; Korbelik M; Zeng H Photochem Photobiol; 2005; 81(5):1219-26. PubMed ID: 15869327 [TBL] [Abstract][Full Text] [Related]
55. Determination of geographical origin of alcoholic beverages using ultraviolet, visible and infrared spectroscopy: A review. Uríčková V; Sádecká J Spectrochim Acta A Mol Biomol Spectrosc; 2015 Sep; 148():131-7. PubMed ID: 25879982 [TBL] [Abstract][Full Text] [Related]
56. Characterization of Articular Cartilage Recovery and Its Correlation with Optical Response in the Near-Infrared Spectral Range. Afara IO; Singh S; Moody H; Zhang L; Oloyede A Cartilage; 2017 Jul; 8(3):307-316. PubMed ID: 28618866 [TBL] [Abstract][Full Text] [Related]
57. The contribution of bone and cartilage to the near-infrared spectrum of osteochondral tissue. McGoverin CM; Lewis K; Yang X; Bostrom MP; Pleshko N Appl Spectrosc; 2014; 68(10):1168-75. PubMed ID: 25197817 [TBL] [Abstract][Full Text] [Related]
58. Green Multi-Platform Solution for the Quantification of Levodopa Enantiomeric Excess in Solid-State Mixtures for Pharmacological Formulations. Biancolillo A; Battistoni S; Presutto R; Marini F Molecules; 2021 Aug; 26(16):. PubMed ID: 34443532 [TBL] [Abstract][Full Text] [Related]
59. Quantification of Inkjet-Printed Pharmaceuticals on Porous Substrates Using Raman Spectroscopy and Near-Infrared Spectroscopy. Edinger M; Iftimi LD; Markl D; Al-Sharabi M; Bar-Shalom D; Rantanen J; Genina N AAPS PharmSciTech; 2019 Jun; 20(5):207. PubMed ID: 31161397 [TBL] [Abstract][Full Text] [Related]
60. Sequential fusion of information from two portable spectrometers for improved prediction of moisture and soluble solids content in pear fruit. Mishra P; Marini F; Brouwer B; Roger JM; Biancolillo A; Woltering E; Echtelt EH Talanta; 2021 Feb; 223(Pt 2):121733. PubMed ID: 33298261 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]