These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 37511805)
1. Prediction of Tarlak F; Yücel Ö Life (Basel); 2023 Jun; 13(7):. PubMed ID: 37511805 [TBL] [Abstract][Full Text] [Related]
2. Development of prediction software to describe total mesophilic bacteria in spinach using a machine learning-based regression approach. Yildirim-Yalcin M; Yucel O; Tarlak F Food Sci Technol Int; 2025 Jan; 31(1):3-10. PubMed ID: 37073088 [TBL] [Abstract][Full Text] [Related]
3. Development and validation of a one-step modelling approach for the determination of chicken meat shelf-life based on the growth kinetics of Tarlak F; Pérez-Rodríguez F Food Sci Technol Int; 2022 Dec; 28(8):672-682. PubMed ID: 34726103 [TBL] [Abstract][Full Text] [Related]
4. Hyperspectral Monitoring of Powdery Mildew Disease Severity in Wheat Based on Machine Learning. Feng ZH; Wang LY; Yang ZQ; Zhang YY; Li X; Song L; He L; Duan JZ; Feng W Front Plant Sci; 2022; 13():828454. PubMed ID: 35386677 [TBL] [Abstract][Full Text] [Related]
5. Prediction of population behavior of Listeria monocytogenes in food using machine learning and a microbial growth and survival database. Hiura S; Koseki S; Koyama K Sci Rep; 2021 May; 11(1):10613. PubMed ID: 34012066 [TBL] [Abstract][Full Text] [Related]
6. Predictive modelling for the growth kinetics of Pseudomonas spp. on button mushroom (Agaricus bisporus) under isothermal and non-isothermal conditions. Tarlak F; Ozdemir M; Melikoglu M Food Res Int; 2020 Apr; 130():108912. PubMed ID: 32156357 [TBL] [Abstract][Full Text] [Related]
7. Using machine learning models to predict the effects of seasonal fluxes on Plesiomonas shigelloides population density. Ekundayo TC; Ijabadeniyi OA; Igbinosa EO; Okoh AI Environ Pollut; 2023 Jan; 317():120734. PubMed ID: 36455774 [TBL] [Abstract][Full Text] [Related]
8. Estimation of dissolved organic carbon from inland waters at a large scale using satellite data and machine learning methods. Harkort L; Duan Z Water Res; 2023 Feb; 229():119478. PubMed ID: 36527868 [TBL] [Abstract][Full Text] [Related]
9. Prediction of water quality parameters using machine learning models: a case study of the Karun River, Iran. Nouraki A; Alavi M; Golabi M; Albaji M Environ Sci Pollut Res Int; 2021 Oct; 28(40):57060-57072. PubMed ID: 34081285 [TBL] [Abstract][Full Text] [Related]
10. Comparison of modelling approaches for the prediction of kinetic growth parameters of Tarlak F; Costa JCCP Food Sci Technol Int; 2023 Sep; 29(6):631-640. PubMed ID: 35642261 [TBL] [Abstract][Full Text] [Related]
11. Predictive modeling of blood pressure during hemodialysis: a comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method. Huang JC; Tsai YC; Wu PY; Lien YH; Chien CY; Kuo CF; Hung JF; Chen SC; Kuo CH Comput Methods Programs Biomed; 2020 Oct; 195():105536. PubMed ID: 32485511 [TBL] [Abstract][Full Text] [Related]
12. Application of machine learning techniques for predicting survival in ovarian cancer. Sorayaie Azar A; Babaei Rikan S; Naemi A; Bagherzadeh Mohasefi J; Pirnejad H; Bagherzadeh Mohasefi M; Wiil UK BMC Med Inform Decis Mak; 2022 Dec; 22(1):345. PubMed ID: 36585641 [TBL] [Abstract][Full Text] [Related]
13. Using machine learning to predict gamma passing rate in volumetric-modulated arc therapy treatment plans. Salari E; Shuai Xu K; Sperling NN; Parsai EI J Appl Clin Med Phys; 2023 Feb; 24(2):e13824. PubMed ID: 36495010 [TBL] [Abstract][Full Text] [Related]
14. PERISCOPE-Opt: Machine learning-based prediction of optimal fermentation conditions and yields of recombinant periplasmic protein expressed in Packiam KAR; Ooi CW; Li F; Mei S; Tey BT; Ong HF; Song J; Ramanan RN Comput Struct Biotechnol J; 2022; 20():2909-2920. PubMed ID: 35765650 [TBL] [Abstract][Full Text] [Related]
15. Development and validation of a mathematical model to describe the growth of Pseudomonas spp. in raw poultry stored under aerobic conditions. Dominguez SA; Schaffner DW Int J Food Microbiol; 2007 Dec; 120(3):287-95. PubMed ID: 17949841 [TBL] [Abstract][Full Text] [Related]
16. Trihalomethane prediction model for water supply system based on machine learning and Log-linear regression. Li H; Chu Y; Zhu Y; Han X; Shu S Environ Geochem Health; 2024 Jan; 46(2):31. PubMed ID: 38227052 [TBL] [Abstract][Full Text] [Related]
17. Estimation of thermophysical property of hybrid nanofluids for solar Thermal applications: Implementation of novel Optimizable Gaussian Process regression (O-GPR) approach for Viscosity prediction. Adun H; Wole-Osho I; Okonkwo EC; Ruwa T; Agwa T; Onochie K; Ukwu H; Bamisile O; Dagbasi M Neural Comput Appl; 2022; 34(13):11233-11254. PubMed ID: 35291505 [TBL] [Abstract][Full Text] [Related]
18. Poplar's Waterlogging Resistance Modeling and Evaluating: Exploring and Perfecting the Feasibility of Machine Learning Methods in Plant Science. Xie X; Zhang X; Shen J; Du K Front Plant Sci; 2022; 13():821365. PubMed ID: 35222479 [TBL] [Abstract][Full Text] [Related]
20. Prediction of meteorological drought and standardized precipitation index based on the random forest (RF), random tree (RT), and Gaussian process regression (GPR) models. Elbeltagi A; Pande CB; Kumar M; Tolche AD; Singh SK; Kumar A; Vishwakarma DK Environ Sci Pollut Res Int; 2023 Mar; 30(15):43183-43202. PubMed ID: 36648725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]