These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 37512194)
1. Thermophysical Properties of Laser Powder Bed Fused Ti-6Al-4V and AlSi10Mg Alloys Made with Varying Laser Parameters. Akwaboa S; Zeng C; Amoafo-Yeboah N; Ibekwe S; Mensah P Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512194 [TBL] [Abstract][Full Text] [Related]
2. Understanding the effects of PBF process parameter interplay on Ti-6Al-4V surface properties. Majumdar T; Bazin T; Massahud Carvalho Ribeiro E; Frith JE; Birbilis N PLoS One; 2019; 14(8):e0221198. PubMed ID: 31465449 [TBL] [Abstract][Full Text] [Related]
3. Influence of Powder Bed Temperature on the Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Fabricated via Laser Powder Bed Fusion. Xing LL; Zhang WJ; Zhao CC; Gao WQ; Shen ZJ; Liu W Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33924888 [TBL] [Abstract][Full Text] [Related]
4. Mechanical properties of diamond lattice Ti-6Al-4V structures produced by laser powder bed fusion: On the effect of the load direction. Cutolo A; Engelen B; Desmet W; Van Hooreweder B J Mech Behav Biomed Mater; 2020 Apr; 104():103656. PubMed ID: 32174413 [TBL] [Abstract][Full Text] [Related]
5. On the Creation of a Material Bond between L-PBF-Manufactured AZ91 and Ti-6Al-4V Components in the Context of Medical Applications. Grüger L; Jensch F; Dittrich F; Härtel S Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336408 [TBL] [Abstract][Full Text] [Related]
6. Densification, Tailored Microstructure, and Mechanical Properties of Selective Laser Melted Ti-6Al-4V Alloy via Annealing Heat Treatment. Wang D; Wang H; Chen X; Liu Y; Lu D; Liu X; Han C Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208455 [TBL] [Abstract][Full Text] [Related]
7. Investigation of Microstructure and Mechanical Properties for Ti-6Al-4V Alloy Parts Produced Using Non-Spherical Precursor Powder by Laser Powder Bed Fusion. Varela J; Arrieta E; Paliwal M; Marucci M; Sandoval JH; Gonzalez JA; McWilliams B; Murr LE; Wicker RB; Medina F Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34199584 [TBL] [Abstract][Full Text] [Related]
8. Corrosion and Corrosion Fatigue Properties of Additively Manufactured Magnesium Alloy WE43 in Comparison to Titanium Alloy Ti-6Al-4V in Physiological Environment. Wegner N; Kotzem D; Wessarges Y; Emminghaus N; Hoff C; Tenkamp J; Hermsdorf J; Overmeyer L; Walther F Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31500239 [TBL] [Abstract][Full Text] [Related]
9. Mechanical Properties and Residual Stress Measurements of Grade IV Titanium and Ti-6Al-4V and Ti-13Nb-13Zr Titanium Alloys after Laser Treatment. Jażdżewska M; Kwidzińska DB; Seyda W; Fydrych D; Zieliński A Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771847 [TBL] [Abstract][Full Text] [Related]
10. Mechanical properties and in vitro cytocompatibility of dense and porous Ti-6Al-4V ELI manufactured by selective laser melting technology for biomedical applications. Suresh S; Sun CN; Tekumalla S; Rosa V; Ling Nai SM; Wong RCW J Mech Behav Biomed Mater; 2021 Nov; 123():104712. PubMed ID: 34365098 [TBL] [Abstract][Full Text] [Related]
11. Feasibility study and material selection for powder-bed fusion process in printing of denture clasps. Ma K; Chen H; Shen Y; Guo Y; Li W; Wang Y; Zhang Y; Sun Y Comput Biol Med; 2023 May; 157():106772. PubMed ID: 36963354 [TBL] [Abstract][Full Text] [Related]
12. Additive Manufacturing of AlSi10Mg and Ti6Al4V Lightweight Alloys via Laser Powder Bed Fusion: A Review of Heat Treatments Effects. Ghio E; Cerri E Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329496 [TBL] [Abstract][Full Text] [Related]
13. Dataset of process-structure-property feature relationship for laser powder bed fusion additive manufactured Ti-6Al-4V material. Luo Q; Yin L; Simpson TW; Beese AM Data Brief; 2023 Feb; 46():108911. PubMed ID: 36710913 [TBL] [Abstract][Full Text] [Related]
14. On thermal properties of metallic powder in laser powder bed fusion additive manufacturing. Zhang S; Lane B; Whiting J; Chou K J Manuf Process; 2019; 47():. PubMed ID: 32855624 [TBL] [Abstract][Full Text] [Related]
15. Effects of Processing Parameters of Selective Laser Melting Process on Thermal Conductivity of AlSi10Mg Alloy. Kim MS Materials (Basel); 2021 May; 14(9):. PubMed ID: 34066334 [TBL] [Abstract][Full Text] [Related]
16. Effects of Process Parameters and Process Defects on the Flexural Fatigue Life of Ti-6Al-4V Fabricated by Laser Powder Bed Fusion. Ramirez B; Banuelos C; De La Cruz A; Nabil ST; Arrieta E; Murr LE; Wicker RB; Medina F Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336289 [TBL] [Abstract][Full Text] [Related]
17. Microstructure and Strength of Ti-6Al-4V Samples Additively Manufactured with TiC Heterogeneous Nucleation Site Particles. Watanabe Y; Yamada S; Chiba T; Sato H; Miura S; Abe K; Kato T Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687665 [TBL] [Abstract][Full Text] [Related]
18. Investigation of an Increased Particle Size Distribution of Ti-6Al-4V Powders Used for Laser-Based Powder Bed Fusion of Metals. Ludwig I; Kluge M Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930313 [TBL] [Abstract][Full Text] [Related]
19. Investigation of the mechanisms by which hot isostatic pressing improves the fatigue performance of powder bed fused Ti-6Al-4V. Li P; Warner DH; Pegues JW; Roach MD; Shamsaei N; Phan N Int J Fatigue; 2019 Mar; 120():342-352. PubMed ID: 31595096 [TBL] [Abstract][Full Text] [Related]
20. Characterization of Composite Powder Feedstock from Powder Bed Fusion Additive Manufacturing Perspective. Fereiduni E; Ghasemi A; Elbestawi M Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31703412 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]