These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37512246)

  • 1. Electron Transfer in Contact Electrification under Different Atmospheres Packaged inside TENG.
    Hou Y; Dong X; Tang W; Li D
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors.
    Wang ZL
    ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raising the Working Temperature of a Triboelectric Nanogenerator by Quenching Down Electron Thermionic Emission in Contact-Electrification.
    Xu C; Wang AC; Zou H; Zhang B; Zhang C; Zi Y; Pan L; Wang P; Feng P; Lin Z; Wang ZL
    Adv Mater; 2018 Sep; 30(38):e1803968. PubMed ID: 30091484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the contact electrification mechanism in semiconductor-semiconductor case by vertical contact-separation triboelectric nanogenerator.
    He Y; Tian J; Peng W; Huang D; Li F; He Y
    Nanotechnology; 2023 May; 34(29):. PubMed ID: 37071989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring Wettability: A Key to Optimizing Liquid-Solid Triboelectric Nanogenerators.
    Kulandaivel A; Potu S; Rajaboina RK; Khanapuram UK
    ACS Appl Mater Interfaces; 2024 Oct; 16(43):58029-58059. PubMed ID: 39413400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Photo-Excitation on Contact Electrification at Liquid-Solid Interface.
    Tao X; Nie J; Li S; Shi Y; Lin S; Chen X; Wang ZL
    ACS Nano; 2021 Jun; 15(6):10609-10617. PubMed ID: 34101417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Review of Contact Electrification at Diversified Interfaces and Related Applications on Triboelectric Nanogenerator.
    Hu J; Iwamoto M; Chen X
    Nanomicro Lett; 2023 Nov; 16(1):7. PubMed ID: 37930592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators.
    Chen J; Yang J; Guo H; Li Z; Zheng L; Su Y; Wen Z; Fan X; Wang ZL
    ACS Nano; 2015 Dec; 9(12):12334-43. PubMed ID: 26529374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ternary Electrification Layered Architecture for High-Performance Triboelectric Nanogenerators.
    Deng W; Zhou Y; Zhao X; Zhang S; Zou Y; Xu J; Yeh MH; Guo H; Chen J
    ACS Nano; 2020 Jul; 14(7):9050-9058. PubMed ID: 32627531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Redox Atmosphere on Contact Electrification of Polymers.
    Sun LL; Lin SQ; Tang W; Chen X; Wang ZL
    ACS Nano; 2020 Dec; 14(12):17354-17364. PubMed ID: 33210533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of the Triboelectric Nanogenerator Using a Metal-to-Metal Imprinting Process for Improved Electrical Output.
    La M; Choi JH; Choi JY; Hwang TY; Kang J; Choi D
    Micromachines (Basel); 2018 Oct; 9(11):. PubMed ID: 30715050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semiconductor Contact-Electrification-Dominated Tribovoltaic Effect for Ultrahigh Power Generation.
    Zhang Z; Wang Z; Chen Y; Feng Y; Dong S; Zhou H; Wang ZL; Zhang C
    Adv Mater; 2022 May; 34(20):e2200146. PubMed ID: 35291054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density of Surface States: Another Key Contributing Factor in Triboelectric Charge Generation.
    Xu G; Guan D; Fu J; Li X; Li A; Ding W; Zi Y
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5355-5362. PubMed ID: 35073035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-adaptive Bioinspired Hummingbird-wing Stimulated Triboelectric Nanogenerators.
    Ahmed A; Hassan I; Song P; Gamaleldin M; Radhi A; Panwar N; Tjin SC; Desoky AY; Sinton D; Yong KT; Zu J
    Sci Rep; 2017 Dec; 7(1):17143. PubMed ID: 29215064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Ultra-Low-Friction Triboelectric-Electromagnetic Hybrid Nanogenerator for Rotation Energy Harvesting and Self-Powered Wind Speed Sensor.
    Wang P; Pan L; Wang J; Xu M; Dai G; Zou H; Dong K; Wang ZL
    ACS Nano; 2018 Sep; 12(9):9433-9440. PubMed ID: 30205007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-Weather Droplet-Based Triboelectric Nanogenerator for Wave Energy Harvesting.
    Wei X; Zhao Z; Zhang C; Yuan W; Wu Z; Wang J; Wang ZL
    ACS Nano; 2021 Aug; 15(8):13200-13208. PubMed ID: 34327988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wind-blown Sand Electrification Inspired Triboelectric Energy Harvesting Based on Homogeneous Inorganic Materials Contact: A Theoretical Study and Prediction.
    Hu W; Wu W; Zhou HM
    Sci Rep; 2016 Jan; 6():19912. PubMed ID: 26817411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Air-gap embedded triboelectric nanogenerator
    Kim I; Roh H; Choi W; Kim D
    Nanoscale; 2021 May; 13(19):8837-8847. PubMed ID: 33950055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape-Adaptive, Self-Healable Triboelectric Nanogenerator with Enhanced Performances by Soft Solid-Solid Contact Electrification.
    Chen Y; Pu X; Liu M; Kuang S; Zhang P; Hua Q; Cong Z; Guo W; Hu W; Wang ZL
    ACS Nano; 2019 Aug; 13(8):8936-8945. PubMed ID: 31260619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Triboelectric Nanogenerators Based on MoS
    Wu C; Kim TW; Park JH; An H; Shao J; Chen X; Wang ZL
    ACS Nano; 2017 Aug; 11(8):8356-8363. PubMed ID: 28737887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.