BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37512405)

  • 1. Recovery of Zinc from Metallurgical Slag and Dust by Ammonium Acetate Using Response Surface Methodology.
    Zheng X; Li J; Ma A; Liu B
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zinc recovery from metallurgical slag and dust by coordination leaching in NH
    Ma A; Zheng X; Li S; Wang Y; Zhu S
    R Soc Open Sci; 2018 Jul; 5(7):180660. PubMed ID: 30109111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Study on the Mechanism and Kinetics of Ultrasound-Enhanced Sulfuric Acid Leaching for Zinc Extraction from Zinc Oxide Dust.
    Zheng X; Li S; Liu B; Zhang L; Ma A
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective recovery of nickel from stainless steel pickling sludge with NH
    Shi C; Zuo X; Yan B
    Environ Technol; 2023 Sep; 44(21):3249-3262. PubMed ID: 35319346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective separation of zinc and iron/carbon from blast furnace dust via a hydrometallurgical cooperative leaching method.
    Luo X; Wang C; Shi X; Li X; Wei C; Li M; Deng Z
    Waste Manag; 2022 Feb; 139():116-123. PubMed ID: 34959087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaching zinc from spent catalyst: process optimization using response surface methodology.
    Zhang Z; Peng J; Srinivasakannan C; Zhang Z; Zhang L; Fernández Y; Menéndez JA
    J Hazard Mater; 2010 Apr; 176(1-3):1113-7. PubMed ID: 20060224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of Zn and Ge from zinc oxide dust by ultrasonic-H
    Xin C; Xia H; Zhang Q; Zhang L; Zhang W
    RSC Adv; 2021 Oct; 11(53):33788-33797. PubMed ID: 35497536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium carbonate synthesis from Kambara reactor desulphurization slag via indirect carbonation for CO
    Lin Y; Yan B; Mitas B; Li C; Fabritius T; Shu Q
    J Environ Manage; 2024 Feb; 351():119773. PubMed ID: 38113789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resource utilization of hazardous solid waste blast furnace dust: Efficient wet desulfurization and metal recovery.
    Yang X; Xie B; Wang F; Ning P; Li K; Jia L; Feng J; Xia F
    Chemosphere; 2023 Feb; 314():137592. PubMed ID: 36566794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The recovery of Zn and Pb and the manufacture of lightweight bricks from zinc smelting slag and clay.
    Hu H; Deng Q; Li C; Xie Y; Dong Z; Zhang W
    J Hazard Mater; 2014 Apr; 271():220-7. PubMed ID: 24637448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification of the leaching solution of recycling zinc from the hazardous electric arc furnace dust through an as-bearing jarosite.
    Khanmohammadi Hazaveh P; Karimi S; Rashchi F; Sheibani S
    Ecotoxicol Environ Saf; 2020 Oct; 202():110893. PubMed ID: 32615495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaching and selective zinc recovery from acidic leachates of zinc metallurgical leach residues.
    Sethurajan M; Huguenot D; Jain R; Lens PN; Horn HA; Figueiredo LH; van Hullebusch ED
    J Hazard Mater; 2017 Feb; 324(Pt A):71-82. PubMed ID: 26832075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaching and selective copper recovery from acidic leachates of Três Marias zinc plant (MG, Brazil) metallurgical purification residues.
    Sethurajan M; Huguenot D; Lens PN; Horn HA; Figueiredo LH; van Hullebusch ED
    J Environ Manage; 2016 Jul; 177():26-35. PubMed ID: 27074201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The leaching kinetics of cadmium from hazardous Cu-Cd zinc plant residues.
    Li M; Zheng S; Liu B; Du H; Dreisinger DB; Tafaghodi L; Zhang Y
    Waste Manag; 2017 Jul; 65():128-138. PubMed ID: 28392119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Selective recovery of copper, zinc and nickel from printed circuit boards by ammonia leaching under pressure].
    Wang M; Cao HB; Zhang Y
    Huan Jing Ke Xue; 2011 Feb; 32(2):596-602. PubMed ID: 21528589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment of copper converter slag with deep eutectic solvent as green chemical.
    Topçu MA; Rüşen A; Küçük Ö
    Waste Manag; 2021 Aug; 132():64-73. PubMed ID: 34314950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ammoniacal leaching process for the selective recovery of value metals from waste lithium-ion batteries.
    Liu X; Huang K; Xiong H; Dong H
    Environ Technol; 2023 Jan; 44(2):211-225. PubMed ID: 34383608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrometallurgical recovery of zinc and lead from electric arc furnace dust using mononitrilotriacetate anion and hexahydrated ferric chloride.
    Leclerc N; Meux E; Lecuire JM
    J Hazard Mater; 2002 Apr; 91(1-3):257-70. PubMed ID: 11900917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective leaching of copper and zinc from primary ores and secondary mineral residues using biogenic ammonia.
    Williamson AJ; Verbruggen F; Chavez Rico VS; Bergmans J; Spooren J; Yurramendi L; Laing GD; Boon N; Hennebel T
    J Hazard Mater; 2021 Feb; 403():123842. PubMed ID: 33264923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of zinc from hyperaccumulator plants: Sedum plumbizincicola.
    Yang JG; Yang JY; Peng CH; Tang CB; Zhou KC
    Environ Technol; 2009 Jun; 30(7):693-700. PubMed ID: 19705606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.