These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 37512603)

  • 21. Review on Hydrophobic Thin Films Prepared Using Magnetron Sputtering Deposition.
    Ju Y; Ai L; Qi X; Li J; Song W
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241391
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stable Superhydrophobic and Antimicrobial ZnO/Polytetrafluoroethylene Films via Radio Frequency (RF) Magnetron Sputtering.
    Zhuang A; Wu K; Lu Y; Yu J
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512603
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improvement of the Space Charge Suppression and Hydrophobicity Property of Cellulose Insulation Pressboard by Surface Sputtering a ZnO/PTFE Functional Film.
    Li Y; Hao J; Zhang J; Hou W; Liu C; Liao R
    Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31623371
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Photoluminescence of Silicon Nitride-Based ZnO Thin Film Developed with RF Magnetron Sputtering].
    Chen JH; Yao WQ; Zhu YF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Feb; 37(2):391-3. PubMed ID: 30264967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. UV-Enhanced Ethanol Sensing Properties of RF Magnetron-Sputtered ZnO Film.
    Huang J; Du Y; Wang Q; Zhang H; Geng Y; Li X; Tian X
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29278393
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural and optical properties of a radio frequency magnetron-sputtered ZnO thin film with different growth angles.
    Ko KH; Joung YH; Choi WS; Park M; Lee J; Hwang HS
    Nanoscale Res Lett; 2012 Jan; 7(1):55. PubMed ID: 22221542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of ZnO-Al
    Liu C; Hao J; Li Y; Liao R
    Polymers (Basel); 2019 Aug; 11(8):. PubMed ID: 31430918
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Construction of Hierarchical Micro/Nanostructured ZnO/Cu-ZnMOFs@SA Superhydrophobic Composite Coatings with Excellent Multifunctionality of Anticorrosion, Blood-Repelling, and Antimicrobial Properties.
    Zhang J; Pei X; Huang J; Ke X; Xu C; Zhao W; Li L; Weng Y; Chen J
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):265-280. PubMed ID: 36537551
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robust and durable liquid-repellent surfaces.
    Chen F; Wang Y; Tian Y; Zhang D; Song J; Crick CR; Carmalt CJ; Parkin IP; Lu Y
    Chem Soc Rev; 2022 Oct; 51(20):8476-8583. PubMed ID: 36189687
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Current Knowledge on the Pathogenesis of Tissue and Medical Device-Related Biofilm Infections.
    Di Domenico EG; Oliva A; Guembe M
    Microorganisms; 2022 Jun; 10(7):. PubMed ID: 35888978
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using essential oils to overcome bacterial biofilm formation and their antimicrobial resistance.
    El-Tarabily KA; El-Saadony MT; Alagawany M; Arif M; Batiha GE; Khafaga AF; Elwan HAM; Elnesr SS; E Abd El-Hack M
    Saudi J Biol Sci; 2021 Sep; 28(9):5145-5156. PubMed ID: 34466092
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Silver Nanoparticles and Their Antibacterial Applications.
    Bruna T; Maldonado-Bravo F; Jara P; Caro N
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281254
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metal-Organic-Framework-Based Materials for Antimicrobial Applications.
    Li R; Chen T; Pan X
    ACS Nano; 2021 Mar; 15(3):3808-3848. PubMed ID: 33629585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Unrecognized Threat of Secondary Bacterial Infections with COVID-19.
    Vaillancourt M; Jorth P
    mBio; 2020 Aug; 11(4):. PubMed ID: 32769090
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antibiotic-Free Antibacterial Strategies Enabled by Nanomaterials: Progress and Perspectives.
    Wang Y; Yang Y; Shi Y; Song H; Yu C
    Adv Mater; 2020 May; 32(18):e1904106. PubMed ID: 31799752
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Depriving Bacterial Adhesion-Related Molecule to Inhibit Biofilm Formation Using CeO
    Qiu H; Pu F; Liu Z; Deng Q; Sun P; Ren J; Qu X
    Small; 2019 Sep; 15(36):e1902522. PubMed ID: 31328358
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism.
    Sirelkhatim A; Mahmud S; Seeni A; Kaus NHM; Ann LC; Bakhori SKM; Hasan H; Mohamad D
    Nanomicro Lett; 2015; 7(3):219-242. PubMed ID: 30464967
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Anti-Biofouling Properties of Superhydrophobic Surfaces are Short-Lived.
    Hwang GB; Page K; Patir A; Nair SP; Allan E; Parkin IP
    ACS Nano; 2018 Jun; 12(6):6050-6058. PubMed ID: 29792802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoengineered Superhydrophobic Surfaces of Aluminum with Extremely Low Bacterial Adhesivity.
    Hizal F; Rungraeng N; Lee J; Jun S; Busscher HJ; van der Mei HC; Choi CH
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):12118-12129. PubMed ID: 28291321
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity.
    Barbieri R; Coppo E; Marchese A; Daglia M; Sobarzo-Sánchez E; Nabavi SF; Nabavi SM
    Microbiol Res; 2017 Mar; 196():44-68. PubMed ID: 28164790
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.