These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 37512651)
1. Fabrication of Spiral Low-Cost Microchannel with Trapezoidal Cross Section for Cell Separation Using a Grayscale Approach. Adel M; Allam A; Sayour AE; Ragai HF; Umezu S; Fath El-Bab AMR Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512651 [TBL] [Abstract][Full Text] [Related]
2. High-Throughput, Label-Free Isolation of White Blood Cells from Whole Blood Using Parallel Spiral Microchannels with U-Shaped Cross-Section. Mehran A; Rostami P; Saidi MS; Firoozabadi B; Kashaninejad N Biosensors (Basel); 2021 Oct; 11(11):. PubMed ID: 34821622 [TBL] [Abstract][Full Text] [Related]
3. Spiral Microchannels with Trapezoidal Cross Section Fabricated by Femtosecond Laser Ablation in Glass for the Inertial Separation of Microparticles. Al-Halhouli A; Al-Faqheri W; Alhamarneh B; Hecht L; Dietzel A Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424104 [TBL] [Abstract][Full Text] [Related]
4. Sheath-less high throughput inertial separation of small microparticles in spiral microchannels with trapezoidal cross-section. Al-Halhouli A; Albagdady A; Dietzel A RSC Adv; 2019 Dec; 9(71):41970-41976. PubMed ID: 35541623 [TBL] [Abstract][Full Text] [Related]
5. Novel size-based design of spiral microfluidic devices with elliptic configurations and trapezoidal cross-section for ultra-fast isolation of circulating tumor cells. Akbarnataj K; Maleki S; Rezaeian M; Haki M; Shamloo A Talanta; 2023 Mar; 254():124125. PubMed ID: 36462283 [TBL] [Abstract][Full Text] [Related]
7. A polymer-film inertial microfluidic sorter fabricated by jigsaw puzzle method for precise size-based cell separation. Zhu Z; Wu D; Li S; Han Y; Xiang N; Wang C; Ni Z Anal Chim Acta; 2021 Jan; 1143():306-314. PubMed ID: 33384126 [TBL] [Abstract][Full Text] [Related]
8. Separation of microalgae from bacterial contaminants using spiral microchannel in the presence of a chemoattractant. Ngum LF; Matsushita Y; El-Mashtoly SF; Fath El-Bab AMR; Abdel-Mawgood AL Bioresour Bioprocess; 2024 Apr; 11(1):36. PubMed ID: 38647805 [TBL] [Abstract][Full Text] [Related]
9. Influence factors of channel geometry for separation of circulating tumor cells by four-ring inertial focusing microchannel. Liu D; Chen S; Luo X Cell Biochem Funct; 2023 Apr; 41(3):375-388. PubMed ID: 36951265 [TBL] [Abstract][Full Text] [Related]
10. Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation. Rafeie M; Zhang J; Asadnia M; Li W; Warkiani ME Lab Chip; 2016 Aug; 16(15):2791-802. PubMed ID: 27377196 [TBL] [Abstract][Full Text] [Related]
11. 3D-Stacked Multistage Inertial Microfluidic Chip for High-Throughput Enrichment of Circulating Tumor Cells. Xu X; Huang X; Sun J; Chen J; Wu G; Yao Y; Zhou N; Wang S; Sun L Cyborg Bionic Syst; 2022; 2022():9829287. PubMed ID: 38645277 [TBL] [Abstract][Full Text] [Related]
12. Spiral microchannel with rectangular and trapezoidal cross-sections for size based particle separation. Guan G; Wu L; Bhagat AA; Li Z; Chen PC; Chao S; Ong CJ; Han J Sci Rep; 2013; 3():1475. PubMed ID: 23502529 [TBL] [Abstract][Full Text] [Related]
13. Separation of leukocytes from blood using spiral channel with trapezoid cross-section. Wu L; Guan G; Hou HW; Bhagat AA; Han J Anal Chem; 2012 Nov; 84(21):9324-31. PubMed ID: 23025404 [TBL] [Abstract][Full Text] [Related]
14. Ultra-low-cost fabrication of polymer-based microfluidic devices with diode laser ablation. Gao K; Liu J; Fan Y; Zhang Y Biomed Microdevices; 2019 Aug; 21(4):83. PubMed ID: 31418064 [TBL] [Abstract][Full Text] [Related]
15. Zweifach-Fung Microfluidic Device for Efficient Microparticle Separation: Cost-Effective Fabrication Using CO Rodríguez CF; Báez-Suárez M; Muñoz-Camargo C; Reyes LH; Osma JF; Cruz JC Micromachines (Basel); 2024 Jul; 15(7):. PubMed ID: 39064443 [TBL] [Abstract][Full Text] [Related]
16. Design and experimental investigation of a novel spiral microfluidic chip to separate wide size range of micro-particles aimed at cell separation. Tabatabaei SA; Zabetian Targhi M Proc Inst Mech Eng H; 2021 Nov; 235(11):1315-1328. PubMed ID: 34218740 [TBL] [Abstract][Full Text] [Related]
17. Improvement of size-based particle separation throughput in slanted spiral microchannel by modifying outlet geometry. Mihandoust A; Maleki-Jirsaraei N; Rouhani S; Safi S; Alizadeh M Electrophoresis; 2020 Mar; 41(5-6):353-359. PubMed ID: 32012295 [TBL] [Abstract][Full Text] [Related]
18. 3D Printing of Inertial Microfluidic Devices. Razavi Bazaz S; Rouhi O; Raoufi MA; Ejeian F; Asadnia M; Jin D; Ebrahimi Warkiani M Sci Rep; 2020 Apr; 10(1):5929. PubMed ID: 32246111 [TBL] [Abstract][Full Text] [Related]
19. A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells. Wang X; Liedert C; Liedert R; Papautsky I Lab Chip; 2016 May; 16(10):1821-30. PubMed ID: 27050341 [TBL] [Abstract][Full Text] [Related]
20. Mathematical Modelling and Simulation Research of Thermal Engraving Technology Based on PMMA Material. Han X; Liu X; Tian L Micromachines (Basel); 2016 Feb; 7(3):. PubMed ID: 30407410 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]