These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37512660)

  • 1. Magnetic Beads inside Droplets for Agitation and Splitting Manipulation by Utilizing a Magnetically Actuated Platform.
    Lin JL; Hsu PP; Kuo JN
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a Droplet Containing the Clustered Magnetic Beads Manipulation by Magnetically Actuated Chips.
    Yen SH; Chin PC; Hsu JY; Lin JL
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform.
    Sista RS; Eckhardt AE; Srinivasan V; Pollack MG; Palanki S; Pamula VK
    Lab Chip; 2008 Dec; 8(12):2188-96. PubMed ID: 19023486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet-based microfluidic washing module for magnetic particle-based assays.
    Lee H; Xu L; Oh KW
    Biomicrofluidics; 2014 Jul; 8(4):044113. PubMed ID: 25379098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets.
    Witters D; Knez K; Ceyssens F; Puers R; Lammertyn J
    Lab Chip; 2013 Jun; 13(11):2047-54. PubMed ID: 23609603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A structure-free digital microfluidic platform for detection of influenza a virus by using magnetic beads and electromagnetic forces.
    Lu PH; Ma YD; Fu CY; Lee GB
    Lab Chip; 2020 Feb; 20(4):789-797. PubMed ID: 31956865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bidirectional Droplet Manipulation on Magnetically Actuated Superhydrophobic Ratchet Surfaces.
    Son C; Yang Z; Kim S; Ferreira PM; Feng J; Kim S
    ACS Nano; 2023 Dec; 17(23):23702-23713. PubMed ID: 37856876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Droplet Microfluidics in Thermoplastics: Device Fabrication, Droplet Generation, and Content Manipulation using Integrated Electric and Magnetic Fields.
    Sahore V; Doonan SR; Bailey RC
    Anal Methods; 2018 Sep; 10(35):4264-4274. PubMed ID: 30886651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of Her2-overexpressing cancer cells using keyhole shaped chamber array employing a magnetic droplet-handling system.
    Okochi M; Koike S; Tanaka M; Honda H
    Biosens Bioelectron; 2017 Jul; 93():32-39. PubMed ID: 27866824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic Janus origami robot for cross-scale droplet omni-manipulation.
    Jiang S; Li B; Zhao J; Wu D; Zhang Y; Zhao Z; Zhang Y; Yu H; Shao K; Zhang C; Li R; Chen C; Shen Z; Hu J; Dong B; Zhu L; Li J; Wang L; Chu J; Hu Y
    Nat Commun; 2023 Sep; 14(1):5455. PubMed ID: 37673871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic-Actuated Jumping of Droplets on Superhydrophobic Grooved Surfaces: A Versatile Strategy for Three-Dimensional Droplet Transportation.
    Huang Y; Wen G; Fan Y; He M; Sun W; Tian X; Huang S
    ACS Nano; 2024 Feb; 18(8):6359-6372. PubMed ID: 38363638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auto-affitech: an automated ligand binding affinity evaluation platform using digital microfluidics with a bidirectional magnetic separation method.
    Guo J; Lin L; Zhao K; Song Y; Huang M; Zhu Z; Zhou L; Yang C
    Lab Chip; 2020 May; 20(9):1577-1585. PubMed ID: 32207498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Particle-Free" Magnetic Actuation of Droplets on Superhydrophobic Surfaces Using Dissolved Paramagnetic Salts.
    Mats L; Logue F; Oleschuk RD
    Anal Chem; 2016 Oct; 88(19):9486-9494. PubMed ID: 27605120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ferrofluid Microdroplet Splitting for Population-Based Microfluidics and Interfacial Tensiometry.
    Latikka M; Backholm M; Baidya A; Ballesio A; Serve A; Beaune G; Timonen JVI; Pradeep T; Ras RHA
    Adv Sci (Weinh); 2020 Jul; 7(14):2000359. PubMed ID: 32714752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional Droplets Formed by Interfacially Self-Assembled Fluorinated Magnetic Nanoparticles for Biocompatible Single Cell Culture and Magnet-Driven Manipulation.
    Liu J; Lyu X; Zhou Z; Yang L; Zeng J; Yang Y; Zhao Z; Chen R; Tong X; Li J; Liu H; Zou Y
    ACS Appl Mater Interfaces; 2023 Apr; 15(13):17324-17334. PubMed ID: 36962257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-droplet cell concentration using dielectrophoresis.
    Han SI; Soo Kim H; Han A
    Biosens Bioelectron; 2017 Nov; 97():41-45. PubMed ID: 28554044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "One-to-three" droplet generation in digital microfluidics for parallel chemiluminescence immunoassays.
    Jin K; Hu C; Hu S; Hu C; Li J; Ma H
    Lab Chip; 2021 Aug; 21(15):2892-2900. PubMed ID: 34196334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetically manipulated droplet splitting on a 3D-printed device to carry out a complexometric assay.
    Hutama TJ; Oleschuk RD
    Lab Chip; 2017 Jul; 17(15):2640-2649. PubMed ID: 28685782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetically Actuated Droplet Manipulation and Its Potential Biomedical Applications.
    Huang G; Li M; Yang Q; Li Y; Liu H; Yang H; Xu F
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1155-1166. PubMed ID: 27991766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulation of single cells inside nanoliter water droplets using acoustic forces.
    Gerlt MS; Haidas D; Ratschat A; Suter P; Dittrich PS; Dual J
    Biomicrofluidics; 2020 Nov; 14(6):064112. PubMed ID: 33381252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.