These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37513074)

  • 1. The Influences of Pore Blockage by Natural Organic Matter and Pore Dimension Tuning on Pharmaceutical Adsorption onto GO-Fe
    He MC; Lin SJ; Huang TC; Chen GF; Peng YP; Chen WH
    Nanomaterials (Basel); 2023 Jul; 13(14):. PubMed ID: 37513074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic degradation of chlorpheniramine over GO-Fe
    Chen WH; Huang JR; Lin CH; Huang CP
    Sci Total Environ; 2020 Sep; 736():139468. PubMed ID: 32479961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of chlorpheniramine and variations of nitrosamine formation potentials in municipal wastewaters by adsorption onto the GO-Fe
    Lin CH; Li CM; Chen CH; Chen WH
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20701-20711. PubMed ID: 31102232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High molecular weight components of natural organic matter preferentially adsorb onto nanoscale zero valent iron and magnetite.
    Li Z; Lowry GV; Fan J; Liu F; Chen J
    Sci Total Environ; 2018 Jul; 628-629():177-185. PubMed ID: 29432929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of natural organic matter on equilibrium adsorption of neutral and charged pharmaceuticals onto activated carbon.
    de Ridder DJ; Verliefde AR; Heijman SG; Verberk JQ; Rietveld LC; van der Aa LT; Amy GL; van Dijk JC
    Water Sci Technol; 2011; 63(3):416-23. PubMed ID: 21278462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The application of GO-Fe
    Moges A; Nkambule TTI; Fito J
    J Environ Manage; 2022 Mar; 305():114369. PubMed ID: 34972044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of pH and ionic composition on sorption/desorption of natural organic matter on zero-valent iron and magnetite nanoparticles.
    Fan J; Liu F; Hu Y; Chen J
    Water Sci Technol; 2015; 72(2):303-10. PubMed ID: 26177414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental application of amine functionalised magnetite nanoparticles grafted graphene oxide chelants.
    Sahu PS; Verma RP; Tewari C; Sahoo NG; Saha B
    Environ Sci Pollut Res Int; 2022 Dec; 29(57):86485-86498. PubMed ID: 35708809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pore distribution effect of activated carbon in adsorbing organic micropollutants from natural water.
    Ebie K; Li F; Azuma Y; Yuasa A; Hagishita T
    Water Res; 2001 Jan; 35(1):167-79. PubMed ID: 11257871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore blockage effect of NOM on atrazine adsorption kinetics of PAC: the roles of PAC pore size distribution and NOM molecular weight.
    Li Q; Snoeyink VL; MariƱas BJ; Campos C
    Water Res; 2003 Dec; 37(20):4863-72. PubMed ID: 14604632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic polyethyleneimine functionalized reduced graphene oxide as a novel magnetic solid-phase extraction adsorbent for the determination of polar acidic herbicides in rice.
    Li N; Chen J; Shi YP
    Anal Chim Acta; 2017 Jan; 949():23-34. PubMed ID: 27876142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of natural organic matter from waters by iron coated pumice.
    Kitis M; Kaplan SS; Karakaya E; Yigit NO; Civelekoglu G
    Chemosphere; 2007 Jan; 66(1):130-8. PubMed ID: 16784768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions.
    Ersan G; Kaya Y; Apul OG; Karanfil T
    Sci Total Environ; 2016 Sep; 565():811-817. PubMed ID: 27107611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino-Fe
    Fraga TJM; de Lima LEM; de Souza ZSB; Carvalho MN; Freire EMPL; Ghislandi MG; da Motta MA
    Environ Sci Pollut Res Int; 2019 Oct; 26(28):28593-28602. PubMed ID: 30203343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green synthesis, characterization, and application of metal oxide nanoparticles for mercury removal from aqueous solution.
    Gindaba GT; Demsash HD; Jayakumar M
    Environ Monit Assess; 2022 Oct; 195(1):9. PubMed ID: 36269461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic GO/Fe
    Li W; Xu M; Cao Q; Luo J; Yang S; Zhao G
    RSC Adv; 2021 May; 11(32):19387-19394. PubMed ID: 35479200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studying absorbance properties and mercury remediation capabilities of gold-graphene oxide-iron oxide (Au-GO-Fe
    Sanchez JRG; Joson PRS; Vega MM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(3):216-223. PubMed ID: 31642370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene Oxide/Polyvinyl Alcohol/Fe
    Le TD; Tran LT; Dang HTM; Tran TTH; Tran HV
    J Anal Methods Chem; 2021; 2021():6670913. PubMed ID: 33763287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of mercury(II) from contaminated water by gold-functionalised Fe
    Maia LFO; Santos MS; Andrade TG; Hott RC; Faria MCDS; Oliveira LCA; Pereira MC; Rodrigues JL
    Environ Technol; 2020 Mar; 41(8):959-970. PubMed ID: 30136902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of a novel nano-Fe
    Ren HS; Cao ZF; Wen X; Wang S; Zhong H; Wu ZK
    Environ Sci Pollut Res Int; 2019 Apr; 26(10):10174-10187. PubMed ID: 30761492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.