These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37513204)

  • 1. Melamine-Assisted Thermal Activation Method for Vacancy-Rich ZnO: Calcination Effects on Microstructure and Photocatalytic Properties.
    Wang W; Lv L; Wang C; Li J
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering the defect distribution in ZnO nanorods through laser irradiation.
    Zheng S; Chen Z; Duley WW; Wu YA; Peng P; Zhou YN
    Nanotechnology; 2023 Sep; 34(49):. PubMed ID: 37643586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal-facet and microstructure engineering in ZnO for photocatalytic NO oxidation.
    Wan Y; Li J; Ni J; Wang C; Ni C; Chen H
    J Hazard Mater; 2022 Aug; 435():129073. PubMed ID: 35650731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO.
    Wang J; Wang Z; Huang B; Ma Y; Liu Y; Qin X; Zhang X; Dai Y
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4024-30. PubMed ID: 22786575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Core-shell ZIF-8@MIL-68(In) derived ZnO nanoparticles-embedded In
    Li J; Liu L; Liang Q; Zhou M; Yao C; Xu S; Li Z
    J Hazard Mater; 2021 Jul; 414():125395. PubMed ID: 33652218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of calcination temperature and heating rate on the photocatalytic properties of ZnO prepared by pyrolysis.
    He L; Tong Z; Wang Z; Chen M; Huang N; Zhang W
    J Colloid Interface Sci; 2018 Jan; 509():448-456. PubMed ID: 28923742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defect-Enriched ZnO/ZnS Heterostructures Derived from Hydrozincite Intermediates for Hydrogen Evolution under Visible Light.
    Zhi Y; Yi Y; Deng C; Zhang Q; Yang S; Peng F
    ChemSusChem; 2022 Sep; 15(18):e202200860. PubMed ID: 35734960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Oxygen Vacancy Defect of ZnO/NiO Nanomaterials Improves Photocatalytic Performance and Ammonia Sensing Performance.
    Zhang J; Li J
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen deficient ZnO 1-x nanosheets with high visible light photocatalytic activity.
    Guo HL; Zhu Q; Wu XL; Jiang YF; Xie X; Xu AW
    Nanoscale; 2015 Apr; 7(16):7216-23. PubMed ID: 25812132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled Defects of Zinc Oxide Nanorods for Efficient Visible Light Photocatalytic Degradation of Phenol.
    Al-Sabahi J; Bora T; Al-Abri M; Dutta J
    Materials (Basel); 2016 Mar; 9(4):. PubMed ID: 28773363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A More Efficient Method for Preparing a MIP-CQDs/ZnO
    Zhou J; Zhang Y; Ding J; Fang J; Yang J; Xie Y; Xu X
    ACS Appl Mater Interfaces; 2024 Jan; 16(2):2365-2377. PubMed ID: 38169325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bulk Oxygen Vacancy Dominating WO
    Guo W; Wei Q; Li G; Wei F; Hu Z
    Nanomaterials (Basel); 2024 May; 14(11):. PubMed ID: 38869548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen vacancy-rich high-pressure rocksalt phase of zinc oxide for enhanced photocatalytic hydrogen evolution.
    Shundo Y; Tam Nguyen T; Akrami S; Edalati P; Itagoe Y; Ishihara T; Arita M; Guo Q; Fuji M; Edalati K
    J Colloid Interface Sci; 2024 Jul; 666():22-34. PubMed ID: 38583207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen vacancies modulated Bi-rich bismuth oxyiodide microspheres with tunable valence band position to boost the photocatalytic activity.
    Ji M; Chen R; Di J; Liu Y; Li K; Chen Z; Xia J; Li H
    J Colloid Interface Sci; 2019 Jan; 533():612-620. PubMed ID: 30193148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of defect-mediated energy transfer from ZnO nanoparticles for the photocatalytic degradation of bilirubin.
    Bora T; Lakshman KK; Sarkar S; Makhal A; Sardar S; Pal SK; Dutta J
    Beilstein J Nanotechnol; 2013; 4():714-25. PubMed ID: 24367739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid, controllable, one-pot and room-temperature aqueous synthesis of ZnO:Cu nanoparticles by pulsed UV laser and its application for photocatalytic degradation of methyl orange.
    Arabi M; Baizaee SM; Bahador A; Otaqsara SMT
    Luminescence; 2018 May; 33(3):475-485. PubMed ID: 29282896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revealing the Dependency of Dye Adsorption and Photocatalytic Activity of ZnO Nanoparticles on Their Morphology and Defect States.
    Hendrix Y; Rauwel E; Nagpal K; Haddad R; Estephan E; Boissière C; Rauwel P
    Nanomaterials (Basel); 2023 Jul; 13(13):. PubMed ID: 37446514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High performance Ce-doped ZnO nanorods for sunlight-driven photocatalysis.
    Chouchene B; Ben Chaabane T; Balan L; Girot E; Mozet K; Medjahdi G; Schneider R
    Beilstein J Nanotechnol; 2016; 7():1338-1349. PubMed ID: 27826508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm.
    Ansari SA; Khan MM; Kalathil S; Nisar A; Lee J; Cho MH
    Nanoscale; 2013 Oct; 5(19):9238-46. PubMed ID: 23938937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Surface and Defect Chemistry on the Photocatalytic Properties of Intentionally Defect-Rich ZnO Nanorod Arrays.
    Kegel J; Zubialevich VZ; Schmidt M; Povey IM; Pemble ME
    ACS Appl Mater Interfaces; 2018 May; 10(21):17994-18004. PubMed ID: 29737166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.