These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 37513271)
21. Decomposition of formic acid using tungsten(VI) oxide supported AgPd nanoparticles. Akbayrak S J Colloid Interface Sci; 2019 Mar; 538():682-688. PubMed ID: 30591196 [TBL] [Abstract][Full Text] [Related]
22. Anchoring IrPdAu Nanoparticles on NH Luo Y; Yang Q; Nie W; Yao Q; Zhang Z; Lu ZH ACS Appl Mater Interfaces; 2020 Feb; 12(7):8082-8090. PubMed ID: 31986879 [TBL] [Abstract][Full Text] [Related]
23. Catalyst Design and Engineering for CO Peramaiah K; Yi M; Dutta I; Chatterjee S; Zhang H; Lai Z; Huang KW Adv Mater; 2024 Oct; ():e2404980. PubMed ID: 39394824 [TBL] [Abstract][Full Text] [Related]
24. Factors Influencing the Performance of Pd/C Catalysts in the Green Production of Hydrogen from Formic Acid. Zacharska M; Bulusheva LG; Lisitsyn AS; Beloshapkin S; Guo Y; Chuvilin AL; Shlyakhova EV; Podyacheva OY; Leahy JJ; Okotrub AV; Bulushev DA ChemSusChem; 2017 Feb; 10(4):720-730. PubMed ID: 27996206 [TBL] [Abstract][Full Text] [Related]
25. Achieving Ultra-High Selectivity to Hydrogen Production from Formic Acid on Pd-Ag Alloys. Karatok M; Ngan HT; Jia X; O'Connor CR; Boscoboinik JA; Stacchiola DJ; Sautet P; Madix RJ J Am Chem Soc; 2023 Mar; 145(9):5114-5124. PubMed ID: 36848504 [TBL] [Abstract][Full Text] [Related]
26. Potential-Rate Correlations of Supported Palladium-Based Catalysts for Aqueous Formic Acid Dehydrogenation. Qi X; Obata K; Yui Y; Honma T; Lu X; Ibe M; Takanabe K J Am Chem Soc; 2024 Apr; 146(13):9191-9204. PubMed ID: 38500345 [TBL] [Abstract][Full Text] [Related]
27. Boron nitride nanosheets supported highly homogeneous bimetallic AuPd alloy nanoparticles catalyst for hydrogen production from formic acid. Shaybanizadeh S; Najafi Chermahini A; Luque R Nanotechnology; 2022 Apr; 33(27):. PubMed ID: 35294941 [TBL] [Abstract][Full Text] [Related]
28. A Review of the CFD Modeling of Hydrogen Production in Catalytic Steam Reforming Reactors. Ghasem N Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555702 [TBL] [Abstract][Full Text] [Related]
29. Zeolite-Encaged Pd-Mn Nanocatalysts for CO Sun Q; Chen BWJ; Wang N; He Q; Chang A; Yang CM; Asakura H; Tanaka T; Hülsey MJ; Wang CH; Yu J; Yan N Angew Chem Int Ed Engl; 2020 Nov; 59(45):20183-20191. PubMed ID: 32770613 [TBL] [Abstract][Full Text] [Related]
30. Yolk-shell silica dioxide spheres @ metal-organic framework immobilized Ni/Mo nanoparticles as an effective catalyst for formic acid dehydrogenation at low temperature. Prabu S; Chiang KY J Colloid Interface Sci; 2021 Dec; 604():584-595. PubMed ID: 34280756 [TBL] [Abstract][Full Text] [Related]
31. Mesoporous Silica Supported Pd-MnO Jin MH; Oh D; Park JH; Lee CB; Lee SW; Park JS; Lee KY; Lee DW Sci Rep; 2016 Sep; 6():33502. PubMed ID: 27666280 [TBL] [Abstract][Full Text] [Related]
32. Catalytic Reactions on Pd-Au Bimetallic Model Catalysts. Han S; Mullins CB Acc Chem Res; 2021 Jan; 54(2):379-387. PubMed ID: 33371669 [TBL] [Abstract][Full Text] [Related]
33. Amine-Functionalized Carbon Bowl-Supported Pd-La(OH) Sun X; Zhang G; Yao Q; Li H; Feng G; Lu ZH Inorg Chem; 2022 Nov; 61(45):18102-18111. PubMed ID: 36325636 [TBL] [Abstract][Full Text] [Related]
34. Homogeneous Molecular Iron Catalysts for Direct Photocatalytic Conversion of Formic Acid to Syngas (CO+H Irfan RM; Wang T; Jiang D; Yue Q; Zhang L; Cao H; Pan Y; Du P Angew Chem Int Ed Engl; 2020 Aug; 59(35):14818-14824. PubMed ID: 32374498 [TBL] [Abstract][Full Text] [Related]
35. An Update on Formic Acid Dehydrogenation by Homogeneous Catalysis. Guan C; Pan Y; Zhang T; Ajitha MJ; Huang KW Chem Asian J; 2020 Apr; 15(7):937-946. PubMed ID: 32030903 [TBL] [Abstract][Full Text] [Related]
36. A Process for Hydrogen Production from the Catalytic Decomposition of Formic Acid over Iridium-Palladium Nanoparticles. Alshammari HM; Alotaibi MH; Aldosari OF; Alsolami AS; Alotaibi NA; Alzahrani YA; Alhumaimess MS; Alotaibi RL; El-Hiti GA Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34204765 [TBL] [Abstract][Full Text] [Related]
37. Carbon bowl-confined subnanometric palladium-gold clusters for formic acid dehydrogenation and hexavalent chromium reduction. Sun X; Ding Y; Feng G; Yao Q; Zhu J; Xia J; Lu ZH J Colloid Interface Sci; 2023 Sep; 645():676-684. PubMed ID: 37167916 [TBL] [Abstract][Full Text] [Related]
38. A Simple and Effective Principle for a Rational Design of Heterogeneous Catalysts for Dehydrogenation of Formic Acid. Li SJ; Zhou YT; Kang X; Liu DX; Gu L; Zhang QH; Yan JM; Jiang Q Adv Mater; 2019 Apr; 31(15):e1806781. PubMed ID: 30803061 [TBL] [Abstract][Full Text] [Related]
39. Overcoming limitations in propane dehydrogenation by codesigning catalyst-membrane systems. Almallahi R; Wortman J; Linic S Science; 2024 Mar; 383(6689):1325-1331. PubMed ID: 38513015 [TBL] [Abstract][Full Text] [Related]
40. Pd-Ag Membrane Coupled to a Two-Zone Fluidized Bed Reactor (TZFBR) for Propane Dehydrogenation on a Pt-Sn/MgAl2O4 Catalyst. Medrano JA; Julián I; Herguido J; Menéndez M Membranes (Basel); 2013 May; 3(2):69-86. PubMed ID: 24958620 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]