These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 37513271)
41. Model Development and Exergy Analysis of a Microreactor for the Steam Methane Reforming Process in a CFD Environment. Rahman ZU; Ahmad I; Kano M; Mustafa J Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267112 [TBL] [Abstract][Full Text] [Related]
42. Superior activity of Pd nanoparticles confined in carbon nanotubes for hydrogen production from formic acid decomposition at ambient temperature. Ding TY; Zhao ZG; Ran MF; Yang YY J Colloid Interface Sci; 2019 Mar; 538():474-480. PubMed ID: 30537660 [TBL] [Abstract][Full Text] [Related]
43. Degradation of trichloroethylene by hydrodechlorination using formic acid as hydrogen source over supported Pd catalysts. Yu X; Wu T; Yang XJ; Xu J; Auzam J; Semiat R; Han YF J Hazard Mater; 2016 Mar; 305():178-189. PubMed ID: 26685065 [TBL] [Abstract][Full Text] [Related]
44. Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts. Bernskoetter WH; Hazari N Acc Chem Res; 2017 Apr; 50(4):1049-1058. PubMed ID: 28306247 [TBL] [Abstract][Full Text] [Related]
45. Recent Progress in Homogeneous Catalytic Dehydrogenation of Formic Acid. Onishi N; Kanega R; Kawanami H; Himeda Y Molecules; 2022 Jan; 27(2):. PubMed ID: 35056770 [TBL] [Abstract][Full Text] [Related]
46. Selective hydrogen production from formic acid decomposition on Pd-Au bimetallic surfaces. Yu WY; Mullen GM; Flaherty DW; Mullins CB J Am Chem Soc; 2014 Aug; 136(31):11070-8. PubMed ID: 25019609 [TBL] [Abstract][Full Text] [Related]
47. Recent Advances in Catalysts and Membranes for MCH Dehydrogenation: A Mini Review. Acharya D; Ng D; Xie Z Membranes (Basel); 2021 Dec; 11(12):. PubMed ID: 34940456 [TBL] [Abstract][Full Text] [Related]
48. Development of high-performance nickel-based catalysts for production of hydrogen and carbon nanotubes from biogas. Saconsint S; Sae-Tang N; Srifa A; Koo-Amornpattana W; Assabumrungrat S; Fukuhara C; Ratchahat S Sci Rep; 2022 Sep; 12(1):15195. PubMed ID: 36071147 [TBL] [Abstract][Full Text] [Related]
49. Formic Acid as a Potential On-Board Hydrogen Storage Method: Development of Homogeneous Noble Metal Catalysts for Dehydrogenation Reactions. Guo J; Yin CK; Zhong DL; Wang YL; Qi T; Liu GH; Shen LT; Zhou QS; Peng ZH; Yao H; Li XB ChemSusChem; 2021 Jul; 14(13):2655-2681. PubMed ID: 33963668 [TBL] [Abstract][Full Text] [Related]
50. Catalytic Membrane Microreactors with an Ultrathin Freestanding Membrane for Nitrobenzene Hydrogenation. Liu M; Zhu X; Liao Q; Chen R; Ye D; Chen G; Wang K ACS Appl Mater Interfaces; 2020 Feb; 12(8):9806-9813. PubMed ID: 32023029 [TBL] [Abstract][Full Text] [Related]
51. Towards Heterogeneous Catalysis: A Review on Recent Advances of Depositing Nanocatalysts in Continuous-Flow Microreactors. Feng H; Zhang Y; Liu J; Liu D Molecules; 2022 Nov; 27(22):. PubMed ID: 36432155 [TBL] [Abstract][Full Text] [Related]
52. Effect of the ortho-Hydroxyl Groups on a Bipyridine Ligand of Iridium Complexes for the High-Pressure Gas Generation from the Catalytic Decomposition of Formic Acid. Iguchi M; Zhong H; Himeda Y; Kawanami H Chemistry; 2017 Dec; 23(70):17788-17793. PubMed ID: 28960487 [TBL] [Abstract][Full Text] [Related]
53. Pd clusters supported on amorphous, low-porosity carbon spheres for hydrogen production from formic acid. Bulushev DA; Bulusheva LG; Beloshapkin S; O'Connor T; Okotrub AV; Ryan KM ACS Appl Mater Interfaces; 2015 Apr; 7(16):8719-26. PubMed ID: 25848960 [TBL] [Abstract][Full Text] [Related]
54. NMR imaging of catalytic hydrogenation in microreactors with the use of para-hydrogen. Bouchard LS; Burt SR; Anwar MS; Kovtunov KV; Koptyug IV; Pines A Science; 2008 Jan; 319(5862):442-5. PubMed ID: 18218891 [TBL] [Abstract][Full Text] [Related]
55. Immobilization of palladium silver nanoparticles on NH Han J; Zhang Z; Hao Z; Li G; Liu T J Colloid Interface Sci; 2021 Apr; 587():736-742. PubMed ID: 33223240 [TBL] [Abstract][Full Text] [Related]
56. Different reactor configurations for enhancement of CO Harkou E; Hafeez S; Adamou P; Zhang Z; Tsiotsias AI; Charisiou ND; Goula MA; Al-Salem SM; Manos G; Constantinou A Environ Res; 2023 Nov; 236(Pt 1):116760. PubMed ID: 37507039 [TBL] [Abstract][Full Text] [Related]
57. Pd/C synthesized with citric acid: an efficient catalyst for hydrogen generation from formic acid/sodium formate. Wang ZL; Yan JM; Wang HL; Ping Y; Jiang Q Sci Rep; 2012; 2():598. PubMed ID: 22953041 [TBL] [Abstract][Full Text] [Related]
58. Production of H Lee HJ; Kang DC; Kim EJ; Suh YW; Kim DP; Han H; Min HK Nanomaterials (Basel); 2022 Sep; 12(17):. PubMed ID: 36080073 [TBL] [Abstract][Full Text] [Related]
59. Surfactant-Free Synthesis of Carbon-Supported Palladium Nanoparticles and Size-Dependent Hydrogen Production from Formic Acid-Formate Solution. Zhang S; Jiang B; Jiang K; Cai WB ACS Appl Mater Interfaces; 2017 Jul; 9(29):24678-24687. PubMed ID: 28658569 [TBL] [Abstract][Full Text] [Related]
60. PdAg Nanoparticles within Core-Shell Structured Zeolitic Imidazolate Framework as a Dual Catalyst for Formic Acid-based Hydrogen Storage/Production. Wen M; Mori K; Futamura Y; Kuwahara Y; Navlani-García M; An T; Yamashita H Sci Rep; 2019 Oct; 9(1):15675. PubMed ID: 31666596 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]