These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37513465)

  • 1. Structural Characterization and Molecular Model Construction of High-Ash Coal from Northern China.
    Zhu B; Dong X; Fan Y; Ma X; Yao S; Fu Y; Chen R; Chang M
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural characterization analysis and macromolecular model construction of coal from Qinggangping coal mine.
    Li Q; Qin Y; Ren S
    Sci Rep; 2023 Sep; 13(1):14365. PubMed ID: 37658094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine Characterization of the Macromolecular Structure of Huainan Coal Using XRD, FTIR, 13C-CP/MAS NMR, SEM, and AFM Techniques.
    Wu D; Zhang H; Hu G; Zhang W
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32521705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction and optimization of macromolecular structure model of Tiebei lignite.
    Jia J; Xiao L; Wang D; Zhao D; Xing Y; Wu Y
    PLoS One; 2023; 18(8):e0289328. PubMed ID: 37549159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural characterization and macromolecular structure construction of non-caking coal in Chicheng Mine.
    Jia J; Yang Q; Liu B; Wang D
    Sci Rep; 2023 Oct; 13(1):16931. PubMed ID: 37805538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Model Construction and Optimal Characterization of High-Volatile Bituminous Coal Molecules.
    Jing D; Meng X; Ge S; Zhang T; Ma M; Wang G
    ACS Omega; 2022 Jun; 7(22):18350-18360. PubMed ID: 35694453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Nanostructure Evolution in Coal Molecules of Different Ranks.
    Meng J; Zhong R; Niu J; Li S; Nie B
    J Nanosci Nanotechnol; 2021 Jan; 21(1):405-421. PubMed ID: 33213640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creation and Generation Mechanism of Macromolecular Representation for Dongsheng Coal Vitrinite.
    Wang X; Dong Z; Yu R
    ACS Omega; 2022 Apr; 7(13):11033-11043. PubMed ID: 35415363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Characterization of Indian Vitrinite-Rich Bituminous Karharbari Coal.
    Jaiswal Y; Pal SL
    ACS Omega; 2020 Mar; 5(12):6336-6347. PubMed ID: 32258868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction and verification of vitrinite-rich and inertinite-rich Zhundong coal models at the aggregate level: new insights from the spatial arrangement and thermal behavior perspective.
    Wang X; Wang S; Zhao Y; Liu Y
    RSC Adv; 2023 Mar; 13(11):7569-7584. PubMed ID: 36908539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Chemical and Alignment Structural Properties of Coal: Insights from Raman, Solid-State
    Li S; Zhu Y; Wang Y; Liu J
    ACS Omega; 2021 May; 6(17):11266-11279. PubMed ID: 34056282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular structure characterization of bituminous coal in Northern China via XRD, Raman and FTIR spectroscopy.
    Jiang J; Zhang S; Longhurst P; Yang W; Zheng S
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jul; 255():119724. PubMed ID: 33784595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Temperature on Molecular Structure of Medium-Rank Coal via Fourier Transform Infrared Spectroscopy.
    Wu M; Qin Y; Qin Y; Xu N; Feng L
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical Structure Characteristics and Model Construction of Coal with Three Kinds of Coalification Degrees.
    Wang C; Xing Y; Shi K; Wang S; Xia Y; Li J; Gui X
    ACS Omega; 2024 Jan; 9(1):1881-1893. PubMed ID: 38222524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of carbon residues structures on burnout characteristic by FTIR and Raman spectroscopy.
    Liu Y; Sun B; Tajcmanova L; Liu C; Wu J
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 272():120947. PubMed ID: 35144080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Belite cement clinker from coal fly ash of high Ca content. Optimization of synthesis parameters.
    Guerrero A; Goñi S; Campillo I; Moragues A
    Environ Sci Technol; 2004 Jun; 38(11):3209-13. PubMed ID: 15224757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Characterization and Molecular Simulation of Baoqing Lignite.
    Zhang D; Li Y; Zi C; Zhang Y; Hu X; Tian G; Zhao W
    ACS Omega; 2021 Apr; 6(15):10281-10287. PubMed ID: 34056182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research on the efficient water-absorbing ceramsite generated by dredged sediments in Dian Lake-China and coal fly ash.
    Cai Y; Gao H; Qu G; Ning P; Hu Y; Zou H; Ren N
    Water Environ Res; 2021 Nov; 93(11):2769-2779. PubMed ID: 34477261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melting Characteristics of Coal Ash and Properties of Fly Ash to Understand the Slag Formation in the Shell Gasifier.
    Wang H; Cheng L; Pu J; Zhao J
    ACS Omega; 2021 Jun; 6(24):16066-16075. PubMed ID: 34179652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influences of coal fly ash containing ammonium salts on properties of cement paste.
    Qin L; Gao X; Li Q
    J Environ Manage; 2019 Nov; 249():109374. PubMed ID: 31408812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.