BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 37513921)

  • 1. An Intriguing Purview on the Design of Macrocyclic Inhibitors for Unexplored Protein Kinases through Their Binding Site Comparison.
    Bhujbal SP; Hah JM
    Pharmaceuticals (Basel); 2023 Jul; 16(7):. PubMed ID: 37513921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of macrocyclic CDK2/4/6 inhibitors with improved potency and DMPK properties through a highly efficient macrocyclic drug design platform.
    Meng F; Liu J; Cao Z; Yu J; Steurer B; Yang Y; Wang Y; Cai X; Zhang M; Ren F; Aliper A; Ding X; Zhavoronkov A
    Bioorg Chem; 2024 May; 146():107285. PubMed ID: 38547721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macrocycles and macrocyclization in anticancer drug discovery: Important pieces of the puzzle.
    Zhang C; Liu F; Zhang Y; Song C
    Eur J Med Chem; 2024 Mar; 268():116234. PubMed ID: 38401189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Recognition of FDA-Approved Small Molecule Protein Kinase Drugs in Protein Kinases.
    Zhu Y; Hu X
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macrocycles in new drug discovery.
    Mallinson J; Collins I
    Future Med Chem; 2012 Jul; 4(11):1409-38. PubMed ID: 22857532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A historical overview of protein kinases and their targeted small molecule inhibitors.
    Roskoski R
    Pharmacol Res; 2015 Oct; 100():1-23. PubMed ID: 26207888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macrocyclization of linear molecules by deep learning to facilitate macrocyclic drug candidates discovery.
    Diao Y; Liu D; Ge H; Zhang R; Jiang K; Bao R; Zhu X; Bi H; Liao W; Chen Z; Zhang K; Wang R; Zhu L; Zhao Z; Hu Q; Li H
    Nat Commun; 2023 Jul; 14(1):4552. PubMed ID: 37507402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New directions in targeting protein kinases: focusing upon true allosteric and bivalent inhibitors.
    Lamba V; Ghosh I
    Curr Pharm Des; 2012; 18(20):2936-45. PubMed ID: 22571662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pocketome of human kinases: prioritizing the ATP binding sites of (yet) untapped protein kinases for drug discovery.
    Volkamer A; Eid S; Turk S; Jaeger S; Rippmann F; Fulle S
    J Chem Inf Model; 2015 Mar; 55(3):538-49. PubMed ID: 25557645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TWN-RENCOD: A novel method for protein binding site comparison.
    Choi KE; Balupuri A; Kang NS
    Comput Struct Biotechnol J; 2023; 21():425-431. PubMed ID: 36618985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding site matching in rational drug design: algorithms and applications.
    Naderi M; Lemoine JM; Govindaraj RG; Kana OZ; Feinstein WP; Brylinski M
    Brief Bioinform; 2019 Nov; 20(6):2167-2184. PubMed ID: 30169563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein kinases as targets for anticancer agents: from inhibitors to useful drugs.
    Fabbro D; Ruetz S; Buchdunger E; Cowan-Jacob SW; Fendrich G; Liebetanz J; Mestan J; O'Reilly T; Traxler P; Chaudhuri B; Fretz H; Zimmermann J; Meyer T; Caravatti G; Furet P; Manley PW
    Pharmacol Ther; 2002; 93(2-3):79-98. PubMed ID: 12191602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting cancer with small-molecular-weight kinase inhibitors.
    Fabbro D; Cowan-Jacob SW; Möbitz H; Martiny-Baron G
    Methods Mol Biol; 2012; 795():1-34. PubMed ID: 21960212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of Macrocyclic mTOR Modulators of Rapamycin Binding Site via Pharmacoinformatics Approaches.
    Parate S; Kumar V; Hong JC; Lee KW
    Comput Biol Chem; 2023 Jun; 104():107875. PubMed ID: 37148678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of novel allosteric binding sites and multi-targeted allosteric inhibitors of receptor and non-receptor tyrosine kinases using a computational approach.
    Kakarala KK; Jamil K
    J Biomol Struct Dyn; 2022 Sep; 40(15):6889-6909. PubMed ID: 33682622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KiSSim: Predicting Off-Targets from Structural Similarities in the Kinome.
    Sydow D; Aßmann E; Kooistra AJ; Rippmann F; Volkamer A
    J Chem Inf Model; 2022 May; 62(10):2600-2616. PubMed ID: 35536589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational studies of molecular pre-organization through macrocyclization: Conformational distribution analysis of closely related non-macrocyclic and macrocyclic analogs.
    Olanders G; Brandt P; Sköld C; Karlén A
    Bioorg Med Chem; 2021 Nov; 49():116399. PubMed ID: 34601455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing protein kinase target similarity: Comparing sequence, structure, and cheminformatics approaches.
    Gani OA; Thakkar B; Narayanan D; Alam KA; Kyomuhendo P; Rothweiler U; Tello-Franco V; Engh RA
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt B):1605-16. PubMed ID: 26001898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural classification of protein kinases using 3D molecular interaction field analysis of their ligand binding sites: target family landscapes.
    Naumann T; Matter H
    J Med Chem; 2002 Jun; 45(12):2366-78. PubMed ID: 12036347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate and Reliable Prediction of the Binding Affinities of Macrocycles to Their Protein Targets.
    Yu HS; Deng Y; Wu Y; Sindhikara D; Rask AR; Kimura T; Abel R; Wang L
    J Chem Theory Comput; 2017 Dec; 13(12):6290-6300. PubMed ID: 29120625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.