These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 37514350)

  • 1. Soil and Phytomicrobiome for Plant Disease Suppression and Management under Climate Change: A Review.
    Chen W; Modi D; Picot A
    Plants (Basel); 2023 Jul; 12(14):. PubMed ID: 37514350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytomicrobiome for promoting sustainable agriculture and food security: Opportunities, challenges, and solutions.
    Chouhan GK; Verma JP; Jaiswal DK; Mukherjee A; Singh S; de Araujo Pereira AP; Liu H; Abd Allah EF; Singh BK
    Microbiol Res; 2021 Jul; 248():126763. PubMed ID: 33892241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The phytomicrobiome: solving plant stress tolerance under climate change.
    Khan AL
    Front Plant Sci; 2023; 14():1219366. PubMed ID: 37746004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytomicrobiome Coordination Signals Hold Potential for Climate Change-Resilient Agriculture.
    Lyu D; Backer R; Subramanian S; Smith DL
    Front Plant Sci; 2020; 11():634. PubMed ID: 32523595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytomicrobiome communications: Novel implications for stress resistance in plants.
    Khanna K; Kohli SK; Sharma N; Kour J; Devi K; Bhardwaj T; Dhiman S; Singh AD; Sharma N; Sharma A; Ohri P; Bhardwaj R; Ahmad P; Alam P; Albalawi TH
    Front Microbiol; 2022; 13():912701. PubMed ID: 36274695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harnessing phytomicrobiome signals for phytopathogenic stress management.
    Sharma A; Raina M; Kumar D; Singh A; Chugh S; Jain S; Kumar M; Rustagi A
    J Biosci; 2022; 47():. PubMed ID: 35092408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inter-organismal signaling and management of the phytomicrobiome.
    Smith DL; Praslickova D; Ilangumaran G
    Front Plant Sci; 2015; 6():722. PubMed ID: 26442036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tillage System and Crop Sequence Affect Soil Disease Suppressiveness and Carbon Status in Boreal Climate.
    Palojärvi A; Kellock M; Parikka P; Jauhiainen L; Alakukku L
    Front Microbiol; 2020; 11():534786. PubMed ID: 33193124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant Holobiont Theory: The Phytomicrobiome Plays a Central Role in Evolution and Success.
    Lyu D; Zajonc J; Pagé A; Tanney CAS; Shah A; Monjezi N; Msimbira LA; Antar M; Nazari M; Backer R; Smith DL
    Microorganisms; 2021 Mar; 9(4):. PubMed ID: 33805166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing long-term impacts of cover crops on soil organic carbon in the central US Midwestern agroecosystems.
    Qin Z; Guan K; Zhou W; Peng B; Tang J; Jin Z; Grant R; Hu T; Villamil MB; DeLucia E; Margenot AJ; Umakant M; Chen Z; Coppess J
    Glob Chang Biol; 2023 May; 29(9):2572-2590. PubMed ID: 36764676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of cover crops at the four spheres: A review of ecosystem services, potential barriers, and future directions for North America.
    Van Eerd LL; Chahal I; Peng Y; Awrey JC
    Sci Total Environ; 2023 Feb; 858(Pt 3):159990. PubMed ID: 36356783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dryland Cropping Systems, Weed Communities, and Disease Status Modulate the Effect of Climate Conditions on Wheat Soil Bacterial Communities.
    Ishaq SL; Seipel T; Yeoman C; Menalled FD
    mSphere; 2020 Jul; 5(4):. PubMed ID: 32669466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agricultural Soil Management Practices Differentially Shape the Bacterial and Fungal Microbiome of
    Wipf HM; Xu L; Gao C; Spinner HB; Taylor J; Lemaux P; Mitchell J; Coleman-Derr D
    Appl Environ Microbiol; 2021 Mar; 87(5):. PubMed ID: 33310712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disease-Suppressive Soils-Beyond Food Production: a Critical Review.
    Jayaraman S; Naorem AK; Lal R; Dalal RC; Sinha NK; Patra AK; Chaudhari SK
    J Soil Sci Plant Nutr; 2021; 21(2):1437-1465. PubMed ID: 33746349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implications of climate change predictions for UK cropping and prospects for possible mitigation: a review of challenges and potential responses.
    Rial-Lovera K; Davies WP; Cannon ND
    J Sci Food Agric; 2017 Jan; 97(1):17-32. PubMed ID: 27103504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering.
    Quiza L; St-Arnaud M; Yergeau E
    Front Plant Sci; 2015; 6():507. PubMed ID: 26236319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing of phytomicrobiome for developing potential biostimulant consortium for enhancing the productivity of chickpea and soil health under sustainable agriculture.
    Mukherjee A; Singh S; Gaurav AK; Chouhan GK; Jaiswal DK; de Araujo Pereira AP; Passari AK; Abdel-Azeem AM; Verma JP
    Sci Total Environ; 2022 Aug; 836():155550. PubMed ID: 35508232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial Derived Compounds, a Step Toward Enhancing Microbial Inoculants Technology for Sustainable Agriculture.
    Naamala J; Smith DL
    Front Microbiol; 2021; 12():634807. PubMed ID: 33679668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signaling in the phytomicrobiome: breadth and potential.
    Smith DL; Subramanian S; Lamont JR; Bywater-Ekegärd M
    Front Plant Sci; 2015; 6():709. PubMed ID: 26442023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulated Soil Organic Carbon Responses to Crop Rotation, Tillage, and Climate Change in North Dakota.
    Nash PR; Gollany HT; Liebig MA; Halvorson JJ; Archer DW; Tanaka DL
    J Environ Qual; 2018 Jul; 47(4):654-662. PubMed ID: 30025045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.