These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 37514677)

  • 1. Video-Based Human Activity Recognition Using Deep Learning Approaches.
    Surek GAS; Seman LO; Stefenon SF; Mariani VC; Coelho LDS
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comprehensive Review of Recent Deep Learning Techniques for Human Activity Recognition.
    Le VT; Tran-Trung K; Hoang VT
    Comput Intell Neurosci; 2022; 2022():8323962. PubMed ID: 35498187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vision Transformer and Deep Sequence Learning for Human Activity Recognition in Surveillance Videos.
    Hussain A; Hussain T; Ullah W; Baik SW
    Comput Intell Neurosci; 2022; 2022():3454167. PubMed ID: 35419045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait Recognition with Self-Supervised Learning of Gait Features Based on Vision Transformers.
    Pinčić D; Sušanj D; Lenac K
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3-D Deconvolutional Networks for the Unsupervised Representation Learning of Human Motions.
    Zhang CY; Xiao YY; Lin JC; Chen CLP; Liu W; Tong YH
    IEEE Trans Cybern; 2022 Jan; 52(1):398-410. PubMed ID: 32149670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Video Behavior Recognition of Pigs Using Two-Stream Convolutional Networks.
    Zhang K; Li D; Huang J; Chen Y
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32079299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HIT HAR: Human Image Threshing Machine for Human Activity Recognition Using Deep Learning Models.
    Poulose A; Kim JH; Han DS
    Comput Intell Neurosci; 2022; 2022():1808990. PubMed ID: 36248917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-speed transformer network for neurodegenerative disease assessment and activity recognition.
    Cheriet M; Dentamaro V; Hamdan M; Impedovo D; Pirlo G
    Comput Methods Programs Biomed; 2023 Mar; 230():107344. PubMed ID: 36706617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable Sensor-Based Human Activity Recognition with Transformer Model.
    Dirgová Luptáková I; Kubovčík M; Pospíchal J
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Deep Sequence Learning Framework for Action Recognition in Small-Scale Depth Video Dataset.
    Bulbul MF; Ullah A; Ali H; Kim D
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep-Learning-Based Character Recognition from Handwriting Motion Data Captured Using IMU and Force Sensors.
    Alemayoh TT; Shintani M; Lee JH; Okamoto S
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Video captioning based on vision transformer and reinforcement learning.
    Zhao H; Chen Z; Guo L; Han Z
    PeerJ Comput Sci; 2022; 8():e916. PubMed ID: 35494808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensor-Based Human Activity Recognition with Spatio-Temporal Deep Learning.
    Nafea O; Abdul W; Muhammad G; Alsulaiman M
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33803891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Manifold Learning Combined With Convolutional Neural Networks for Action Recognition.
    Chen X; Weng J; Lu W; Xu J; Weng J
    IEEE Trans Neural Netw Learn Syst; 2018 Sep; 29(9):3938-3952. PubMed ID: 28922128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Human Activities Based on a New Structure of Skeleton Features and Deep Learning Model.
    Jaouedi N; Perales FJ; Buades JM; Boujnah N; Bouhlel MS
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32882884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning-Based Human Activity Real-Time Recognition for Pedestrian Navigation.
    Ye J; Li X; Zhang X; Zhang Q; Chen W
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32366055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fusion of Video and Inertial Sensing for Deep Learning-Based Human Action Recognition.
    Wei H; Jafari R; Kehtarnavaz N
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human Behavior Recognition in Outdoor Sports Based on the Local Error Model and Convolutional Neural Network.
    Hua X; Han L; Jiang Y
    Comput Intell Neurosci; 2022; 2022():6988525. PubMed ID: 35800705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DANet: Semi-supervised differentiated auxiliaries guided network for video action recognition.
    Gao G; Liu Z; Zhang G; Li J; Qin AK
    Neural Netw; 2023 Jan; 158():121-131. PubMed ID: 36455427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network.
    Steven Eyobu O; Han DS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.