These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 37514711)
1. Real-Time Ocean Current Compensation for AUV Trajectory Tracking Control Using a Meta-Learning and Self-Adaptation Hybrid Approach. Zhang Y; Che J; Hu Y; Cui J; Cui J Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514711 [TBL] [Abstract][Full Text] [Related]
2. Lagrange tracking-based long-term drift trajectory prediction method for Autonomous Underwater Vehicle. Zheng S; Zhang M; Zhang J; Li J Math Biosci Eng; 2023 Nov; 20(12):21075-21097. PubMed ID: 38124588 [TBL] [Abstract][Full Text] [Related]
3. Attention-Based Meta-Reinforcement Learning for Tracking Control of AUV With Time-Varying Dynamics. Jiang P; Song S; Huang G IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6388-6401. PubMed ID: 34029197 [TBL] [Abstract][Full Text] [Related]
4. Modeling and Trajectory Tracking Model Predictive Control Novel Method of AUV Based on CFD Data. Bao H; Zhu H Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684855 [TBL] [Abstract][Full Text] [Related]
5. Adaptive optimal trajectory tracking control of AUVs based on reinforcement learning. Li Z; Wang M; Ma G ISA Trans; 2023 Jun; 137():122-132. PubMed ID: 36522214 [TBL] [Abstract][Full Text] [Related]
6. Data-Gathering Scheme Using AUVs in Large-Scale Underwater Sensor Networks: A Multihop Approach. Khan JU; Cho HS Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27706042 [TBL] [Abstract][Full Text] [Related]
7. AUV Path Planning Considering Ocean Current Disturbance Based on Cloud Desktop Technology. Hu S; Xiao S; Yang J; Zhang Z; Zhang K; Zhu Y; Zhang Y Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687967 [TBL] [Abstract][Full Text] [Related]
8. Reinforcement Learning-Based Multi-AUV Adaptive Trajectory Planning for Under-Ice Field Estimation. Wang C; Wei L; Wang Z; Song M; Mahmoudian N Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30424017 [TBL] [Abstract][Full Text] [Related]
9. A Probabilistic and Highly Efficient Topology Control Algorithm for Underwater Cooperating AUV Networks. Li N; Cürüklü B; Bastos J; Sucasas V; Fernandez JAS; Rodriguez J Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28471387 [TBL] [Abstract][Full Text] [Related]
10. Underwater Target Tracking Using Forward-Looking Sonar for Autonomous Underwater Vehicles. Zhang T; Liu S; He X; Huang H; Hao K Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31878003 [TBL] [Abstract][Full Text] [Related]
11. Command-Filtered Robust Adaptive NN Control With the Prescribed Performance for the 3-D Trajectory Tracking of Underactuated AUVs. Li J; Du J; Chen CLP IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6545-6557. PubMed ID: 34057897 [TBL] [Abstract][Full Text] [Related]
12. Experimental Evaluation on Depth Control Using Improved Model Predictive Control for Autonomous Underwater Vehicle (AUVs). Yao F; Yang C; Liu X; Zhang M Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30018268 [TBL] [Abstract][Full Text] [Related]
13. Clustering Cloud-Like Model-Based Targets Underwater Tracking for AUVs. Sheng M; Tang S; Qin H; Wan L Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30658478 [TBL] [Abstract][Full Text] [Related]
14. Optimal tracking control of an Autonomous Underwater Vehicle: A PMP approach. B A; Gajbhiye S ISA Trans; 2024 Feb; 145():298-314. PubMed ID: 38057173 [TBL] [Abstract][Full Text] [Related]
15. Data-driven trajectory tracking control for autonomous underwater vehicle based on iterative extended state observer. Wu C; Dai Y; Shan L; Zhu Z; Wu Z Math Biosci Eng; 2022 Jan; 19(3):3036-3055. PubMed ID: 35240819 [TBL] [Abstract][Full Text] [Related]
16. Towards Energy-Aware Feedback Planning for Long-Range Autonomous Underwater Vehicles. Alam T; Al Redwan Newaz A; Bobadilla L; Alsabban WH; Smith RN; Karimoddini A Front Robot AI; 2021; 8():621820. PubMed ID: 33996922 [TBL] [Abstract][Full Text] [Related]
17. Virtual Guidance-Based Coordinated Tracking Control of Multi-Autonomous Underwater Vehicles Using Composite Neural Learning. Shou Y; Xu B; Zhang A; Mei T IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5565-5574. PubMed ID: 33657000 [TBL] [Abstract][Full Text] [Related]
18. Robust Position Control of an Over-actuated Underwater Vehicle under Model Uncertainties and Ocean Current Effects Using Dynamic Sliding Mode Surface and Optimal Allocation Control. Vu MT; Le TH; Thanh HLNN; Huynh TT; Van M; Hoang QD; Do TD Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33499320 [TBL] [Abstract][Full Text] [Related]
19. Experimental Validation of a Model-Free High-Order Sliding Mode Controller with Finite-Time Convergence for Trajectory Tracking of Autonomous Underwater Vehicles. González-García J; Gómez-Espinosa A; García-Valdovinos LG; Salgado-Jiménez T; Cuan-Urquizo E; Escobedo Cabello JA Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062449 [TBL] [Abstract][Full Text] [Related]
20. Multi Pseudo Q-Learning-Based Deterministic Policy Gradient for Tracking Control of Autonomous Underwater Vehicles. Shi W; Song S; Wu C; Chen CLP IEEE Trans Neural Netw Learn Syst; 2019 Dec; 30(12):3534-3546. PubMed ID: 30602426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]