BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 37514756)

  • 1. Dual-Function Meta-Grating Based on Tunable Fano Resonance for Reflective Filter and Sensor Applications.
    Liu F; Jia H; Chen Y; Luo X; Huang M; Wang M; Zhang X
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-sensitivity plasmonic sensor by narrowing Fano resonances in a tilted metallic nano-groove array.
    Jia S; Li Z; Chen J
    Opt Express; 2021 Jul; 29(14):21358-21368. PubMed ID: 34265925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fano coupling between Rayleigh anomaly and localized surface plasmon resonance for sensor applications.
    Liu F; Zhang X
    Biosens Bioelectron; 2015 Jun; 68():719-725. PubMed ID: 25679119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-reference plasmonic sensors based on double Fano resonances.
    Wang Y; Sun C; Li H; Gong Q; Chen J
    Nanoscale; 2017 Aug; 9(31):11085-11092. PubMed ID: 28741643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing and Quantifying Gold Nanospheres Based on LSPR Label-Free Biosensor for Dengue Diagnosis.
    Farooq S; Wali F; Zezell DM; de Araujo RE; Rativa D
    Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double-layered metal grating for high-performance refractive index sensing.
    Li G; Shen Y; Xiao G; Jin C
    Opt Express; 2015 Apr; 23(7):8995-9003. PubMed ID: 25968735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Nanosensor Based on Fano Resonances Created by Changing the Deviation Angle of the Metal Core in a Plasmonic Cavity.
    Wang Q; Ouyang Z; Sun Y; Lin M; Liu Q; Zheng G; Fan J
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29596341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential-Scanning Localized Surface Plasmon Resonance Sensor.
    Nishi H; Hiroya S; Tatsuma T
    ACS Nano; 2015 Jun; 9(6):6214-21. PubMed ID: 26030715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance refractive index sensing system based on multiple Fano resonances in polarization-insensitive metasurface with nanorings.
    Shen Z; Du M
    Opt Express; 2021 Aug; 29(18):28287-28296. PubMed ID: 34614963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit.
    Shen Y; Zhou J; Liu T; Tao Y; Jiang R; Liu M; Xiao G; Zhu J; Zhou ZK; Wang X; Jin C; Wang J
    Nat Commun; 2013; 4():2381. PubMed ID: 23979039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Independently Tunable Fano Resonances Based on the Coupled Hetero-Cavities in a Plasmonic MIM System.
    Wang Q; Ouyang Z; Lin M; Liu Q
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30201870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Short Review on the Role of the Metal-Graphene Hybrid Nanostructure in Promoting the Localized Surface Plasmon Resonance Sensor Performance.
    Alharbi R; Irannejad M; Yavuz M
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable multiple Fano resonances based on a plasmonic metal-insulator-metal structure for nano-sensing and plasma blood sensing applications.
    Rohimah S; Tian H; Wang J; Chen J; Li J; Liu X; Cui J; Hao Y
    Appl Opt; 2022 Feb; 61(6):1275-1283. PubMed ID: 35201006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical-fibre characteristics based on Fano resonances and sensor application in blood glucose detection.
    Zhu J; Yin J
    Opt Express; 2022 Jul; 30(15):26749-26760. PubMed ID: 36236861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Quality Plasmonic Sensors Based on Fano Resonances Created through Cascading Double Asymmetric Cavities.
    Zhang X; Shao M; Zeng X
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27763539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic crescent nanoarray-based surface lattice resonance sensor with a high figure of merit.
    Wang L; Wang Q; Wang TQ; Zhao WM; Yin XY; Jiang JX; Zhang SS
    Nanoscale; 2022 Apr; 14(16):6144-6151. PubMed ID: 35388826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Independently tunable double Fano resonances in asymmetric MIM waveguide structure.
    Qi J; Chen Z; Chen J; Li Y; Qiang W; Xu J; Sun Q
    Opt Express; 2014 Jun; 22(12):14688-95. PubMed ID: 24977564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly controllable double Fano resonances in plasmonic metasurfaces.
    Liu Z; Ye J
    Nanoscale; 2016 Oct; 8(40):17665-17674. PubMed ID: 27714114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical Investigation of Multifunctional Plasmonic Micro-Fiber Based on Fano Resonances and LSPR Excited via Cylindrical Vector Beam.
    Liu M; Yu L; Lei Y; Fang X; Ma Y; Liu L; Zheng J; Lin K; Gao P
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple Fano-Like MIM Plasmonic Structure Based on Triangular Resonator for Refractive Index Sensing.
    Jankovic N; Cselyuszka N
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29351186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.