These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 37514778)

  • 1. The Principles of Hearable Photoplethysmography Analysis and Applications in Physiological Monitoring-A Review.
    Azudin K; Gan KB; Jaafar R; Ja'afar MH
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PPG EduKit: An Adjustable Photoplethysmography Evaluation System for Educational Activities.
    Solé Morillo Á; Lambert Cause J; Baciu VE; da Silva B; Garcia-Naranjo JC; Stiens J
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoplethysmogram Analysis and Applications: An Integrative Review.
    Park J; Seok HS; Kim SS; Shin H
    Front Physiol; 2021; 12():808451. PubMed ID: 35300400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Principles of photoplethysmography and its applications in physiological measurements].
    Shi P; Yu H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Aug; 30(4):899-904. PubMed ID: 24059078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sources of Inaccuracy in Photoplethysmography for Continuous Cardiovascular Monitoring.
    Fine J; Branan KL; Rodriguez AJ; Boonya-Ananta T; Ajmal ; Ramella-Roman JC; McShane MJ; Coté GL
    Biosensors (Basel); 2021 Apr; 11(4):. PubMed ID: 33923469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using time-frequency analysis of the photoplethysmographic waveform to detect the withdrawal of 900 mL of blood.
    Scully CG; Selvaraj N; Romberg FW; Wardhan R; Ryan J; Florian JP; Silverman DG; Shelley KH; Chon KH
    Anesth Analg; 2012 Jul; 115(1):74-81. PubMed ID: 22543068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo investigation of ear canal pulse oximetry during hypothermia.
    Budidha K; Kyriacou PA
    J Clin Monit Comput; 2018 Feb; 32(1):97-107. PubMed ID: 28130679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Systematic Approach Focused on Machine Learning Models for Exploring the Landscape of Physiological Measurement and Estimation Using Photoplethysmography (PPG).
    Alam J; Khan MF; Khan MA; Singh R; Mundazeer M; Kumar P
    J Cardiovasc Transl Res; 2024 Jun; 17(3):669-684. PubMed ID: 38010481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of Photoplethysmography Behind the Ear for Pulse Oximetry in Hypoxic Conditions with a Novel Device (SPYDR).
    Bradke B; Everman B
    Biosensors (Basel); 2020 Apr; 10(4):. PubMed ID: 32260393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Smart Mandibular Advancement Device for Intraoral Cardiorespiratory Monitoring.
    Nabavi S; Debbarma S; Bhadra S
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4079-4084. PubMed ID: 33018895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoplethysmography behind the Ear Outperforms Electrocardiogram for Cardiovascular Monitoring in Dynamic Environments.
    Bradke BS; Miller TA; Everman B
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Approach towards Motion-Tolerant PPG-Based Algorithm for Real-Time Heart Rate Monitoring of Moving Pigs.
    Youssef A; Peña Fernández A; Wassermann L; Biernot S; Wittauer EM; Bleich A; Hartung J; Berckmans D; Norton T
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in Photoplethysmography for Personalized Cardiovascular Monitoring.
    Kim S; Xiao X; Chen J
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36290999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Respiration signals from photoplethysmography.
    Nilsson LM
    Anesth Analg; 2013 Oct; 117(4):859-865. PubMed ID: 23449854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform.
    Wu HT; Lewis GF; Davila MI; Daubechies I; Porges SW
    Methods Inf Med; 2016 Oct; 55(5):463-472. PubMed ID: 27626806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoplethysmography for blood volumes and oxygenation changes during intermittent vascular occlusions.
    Abay TY; Kyriacou PA
    J Clin Monit Comput; 2018 Jun; 32(3):447-455. PubMed ID: 28547651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Filtering-induced time shifts in photoplethysmography pulse features measured at different body sites: the importance of filter definition and standardization.
    Liu H; Allen J; Khalid SG; Chen F; Zheng D
    Physiol Meas; 2021 Jul; 42(7):. PubMed ID: 34111855
    [No Abstract]   [Full Text] [Related]  

  • 18. Wearable In-Ear PPG: Detailed Respiratory Variations Enable Classification of COPD.
    Davies HJ; Bachtiger P; Williams I; Molyneaux PL; Peters NS; Mandic DP
    IEEE Trans Biomed Eng; 2022 Jul; 69(7):2390-2400. PubMed ID: 35077352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Review of Wearable Multi-Wavelength Photoplethysmography.
    Ray D; Collins T; Woolley S; Ponnapalli P
    IEEE Rev Biomed Eng; 2023; 16():136-151. PubMed ID: 34669577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The human ear canal: investigation of its suitability for monitoring photoplethysmographs and arterial oxygen saturation.
    Budidha K; Kyriacou PA
    Physiol Meas; 2014 Feb; 35(2):111-28. PubMed ID: 24399082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.