These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37514789)

  • 1. Human Activity Prediction Based on Forecasted IMU Activity Signals by Sequence-to-Sequence Deep Neural Networks.
    Jaramillo IE; Chola C; Jeong JG; Oh JH; Jung H; Lee JH; Lee WH; Kim TS
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network.
    Steven Eyobu O; Han DS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HIT HAR: Human Image Threshing Machine for Human Activity Recognition Using Deep Learning Models.
    Poulose A; Kim JH; Han DS
    Comput Intell Neurosci; 2022; 2022():1808990. PubMed ID: 36248917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes.
    Mekruksavanich S; Jitpattanakul A
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33652697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex Deep Neural Networks from Large Scale Virtual IMU Data for Effective Human Activity Recognition Using Wearables.
    Kwon H; Abowd GD; Plötz T
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IMU-Based Fitness Activity Recognition Using CNNs for Time Series Classification.
    Müller PN; Müller AJ; Achenbach P; Göbel S
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A CSI-Based Human Activity Recognition Using Deep Learning.
    Fard Moshiri P; Shahbazian R; Nabati M; Ghorashi SA
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data Valuation Algorithm for Inertial Measurement Unit-Based Human Activity Recognition.
    Kim YW; Lee S
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ensem-HAR: An Ensemble Deep Learning Model for Smartphone Sensor-Based Human Activity Recognition for Measurement of Elderly Health Monitoring.
    Bhattacharya D; Sharma D; Kim W; Ijaz MF; Singh PK
    Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Learning Models for IMU-Based HAR with Feature Analysis and Data Correction.
    Tseng YH; Wen CY
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid TCN-GRU model for classifying human activities using smartphone inertial signals.
    Raja Sekaran S; Pang YH; You LZ; Yin OS
    PLoS One; 2024; 19(8):e0304655. PubMed ID: 39137226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Robust Deep Feature Extraction Method for Human Activity Recognition Using a Wavelet Based Spectral Visualisation Technique.
    Ahmed N; Numan MOA; Kabir R; Islam MR; Watanobe Y
    Sensors (Basel); 2024 Jul; 24(13):. PubMed ID: 39001122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achieving More with Less: A Lightweight Deep Learning Solution for Advanced Human Activity Recognition (HAR).
    AlMuhaideb S; AlAbdulkarim L; AlShahrani DM; AlDhubaib H; AlSadoun DE
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IMU-to-Segment Assignment and Orientation Alignment for the Lower Body Using Deep Learning.
    Zimmermann T; Taetz B; Bleser G
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29351262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust human locomotion and localization activity recognition over multisensory.
    Khan D; Alonazi M; Abdelhaq M; Al Mudawi N; Algarni A; Jalal A; Liu H
    Front Physiol; 2024; 15():1344887. PubMed ID: 38449788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning-Based Near-Fall Detection Algorithm for Fall Risk Monitoring System Using a Single Inertial Measurement Unit.
    Choi A; Kim TH; Yuhai O; Jeong S; Kim K; Kim H; Mun JH
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2385-2394. PubMed ID: 35969550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Fast and Robust Deep Convolutional Neural Networks for Complex Human Activity Recognition Using Smartphone.
    Qi W; Su H; Yang C; Ferrigno G; De Momi E; Aliverti A
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31470521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wrapper-based deep feature optimization for activity recognition in the wearable sensor networks of healthcare systems.
    Sahoo KK; Ghosh R; Mallik S; Roy A; Singh PK; Zhao Z
    Sci Rep; 2023 Jan; 13(1):965. PubMed ID: 36653370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformer-Based Human Activity Recognition Using Inertial Measurement Units.
    Seenath S; Dharmaraj M
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human activity recognition for analyzing stress behavior based on Bi-LSTM.
    Sa-Nguannarm P; Elbasani E; Kim JD
    Technol Health Care; 2023; 31(5):1997-2007. PubMed ID: 36872815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.