These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37514805)

  • 1. Exploring Regularization Methods for Domain Generalization in Accelerometer-Based Human Activity Recognition.
    Bento N; Rebelo J; Carreiro AV; Ravache F; Barandas M
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing Handcrafted Features and Deep Neural Representations for Domain Generalization in Human Activity Recognition.
    Bento N; Rebelo J; Barandas M; Carreiro AV; Campagner A; Cabitza F; Gamboa H
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes.
    Mekruksavanich S; Jitpattanakul A
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33652697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decentralized stochastic sharpness-aware minimization algorithm.
    Chen S; Deng X; Xu D; Sun T; Li D
    Neural Netw; 2024 Aug; 176():106325. PubMed ID: 38653126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human Activity Recognition Using Attention-Mechanism-Based Deep Learning Feature Combination.
    Akter M; Ansary S; Khan MA; Kim D
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mask-Shift-Inference: A novel paradigm for domain generalization.
    Shao Y; Tian N; Li X; Zhang Q; Zhao W
    Neural Netw; 2024 Nov; 179():106629. PubMed ID: 39153401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizing Inertial Data For Wearable Sensor Based Daily Life Activity Recognition Using Convolutional Neural Network
    Huynh-The T; Hua CH; Kim DS
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2478-2481. PubMed ID: 31946400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Out-of-Distribution Detection of Human Activity Recognition with Smartwatch Inertial Sensors.
    Boyer P; Burns D; Whyne C
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33804317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing Human Activity Recognition in Smart Homes with Self-Supervised Learning and Self-Attention.
    Chen H; Gouin-Vallerand C; Bouchard K; Gaboury S; Couture M; Bier N; Giroux S
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. End-to-End Versatile Human Activity Recognition with Activity Image Transfer Learning.
    Ye Y; Liu Z; Huang Z; Pan T; Wan Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1128-1131. PubMed ID: 34891486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Robust Deep Learning Approach for Position-Independent Smartphone-Based Human Activity Recognition.
    Almaslukh B; Artoli AM; Al-Muhtadi J
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30388855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three approaches to facilitate invariant neurons and generalization to out-of-distribution orientations and illuminations.
    Sakai A; Sunagawa T; Madan S; Suzuki K; Katoh T; Kobashi H; Pfister H; Sinha P; Boix X; Sasaki T
    Neural Netw; 2022 Nov; 155():119-143. PubMed ID: 36054984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating and Enhancing the Generalization Performance of Machine Learning Models for Physical Activity Intensity Prediction From Raw Acceleration Data.
    Farrahi V; Niemela M; Tjurin P; Kangas M; Korpelainen R; Jamsa T
    IEEE J Biomed Health Inform; 2020 Jan; 24(1):27-38. PubMed ID: 31107668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust Human Activity Recognition by Integrating Image and Accelerometer Sensor Data Using Deep Fusion Network.
    Kang J; Shin J; Shin J; Lee D; Choi A
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human Activity Recognition via Hybrid Deep Learning Based Model.
    Khan IU; Afzal S; Lee JW
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single Accelerometer to Recognize Human Activities Using Neural Networks.
    Vakacherla SS; Kantharaju P; Mevada M; Kim M
    J Biomech Eng; 2023 Jun; 145(6):. PubMed ID: 36695756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Domain Knowledge for Interpretable and Competitive Multi-Class Human Activity Recognition.
    Scheurer S; Tedesco S; Brown KN; O'Flynn B
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IoT-Enabled WBAN and Machine Learning for Speech Emotion Recognition in Patients.
    Olatinwo DD; Abu-Mahfouz A; Hancke G; Myburgh H
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A transfer learning model with multi-source domains for biomedical event trigger extraction.
    Chen Y
    BMC Genomics; 2021 Jan; 22(1):31. PubMed ID: 33413073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AdaSAM: Boosting sharpness-aware minimization with adaptive learning rate and momentum for training deep neural networks.
    Sun H; Shen L; Zhong Q; Ding L; Chen S; Sun J; Li J; Sun G; Tao D
    Neural Netw; 2024 Jan; 169():506-519. PubMed ID: 37944247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.