BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37514858)

  • 21. Measuring freezing of gait during daily-life: an open-source, wearable sensors approach.
    Mancini M; Shah VV; Stuart S; Curtze C; Horak FB; Safarpour D; Nutt JG
    J Neuroeng Rehabil; 2021 Jan; 18(1):1. PubMed ID: 33397401
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calibration-Free Gait Assessment by Foot-Worn Inertial Sensors.
    Laidig D; Jocham AJ; Guggenberger B; Adamer K; Fischer M; Seel T
    Front Digit Health; 2021; 3():736418. PubMed ID: 34806077
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
    Canete S; Jacobs DA
    J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Deep Learning Approach for Gait Event Detection from a Single Shank-Worn IMU: Validation in Healthy and Neurological Cohorts.
    Romijnders R; Warmerdam E; Hansen C; Schmidt G; Maetzler W
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632266
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accuracy and comparison of sensor-based gait speed estimations under standardized and daily life conditions in children undergoing rehabilitation.
    Rast FM; Aschwanden S; Werner C; Demkó L; Labruyère R
    J Neuroeng Rehabil; 2022 Oct; 19(1):105. PubMed ID: 36195950
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of variability and gait dynamics in spatiotemporal variables between different self-paced treadmill control modes.
    Wei W; Kaiming Y; Yu Z; Yuyang Q; Chenhui W
    J Biomech; 2020 Sep; 110():109979. PubMed ID: 32827775
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inertial sensor-based stride parameter calculation from gait sequences in geriatric patients.
    Rampp A; Barth J; Schülein S; Gaßmann KG; Klucken J; Eskofier BM
    IEEE Trans Biomed Eng; 2015 Apr; 62(4):1089-97. PubMed ID: 25389237
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fourier-based integration of quasi-periodic gait accelerations for drift-free displacement estimation using inertial sensors.
    Sabatini AM; Ligorio G; Mannini A
    Biomed Eng Online; 2015 Nov; 14():106. PubMed ID: 26597696
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Validation of a Sensor-Based Gait Analysis System with a Gold-Standard Motion Capture System in Patients with Parkinson's Disease.
    Jakob V; Küderle A; Kluge F; Klucken J; Eskofier BM; Winkler J; Winterholler M; Gassner H
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic balance assessment during gait in children with Down and Prader-Willi syndromes using inertial sensors.
    Belluscio V; Bergamini E; Salatino G; Marro T; Gentili P; Iosa M; Morelli D; Vannozzi G
    Hum Mov Sci; 2019 Feb; 63():53-61. PubMed ID: 30503982
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Orientation-Invariant Spatio-Temporal Gait Analysis Using Foot-Worn Inertial Sensors.
    Guimarães V; Sousa I; Correia MV
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34200492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Ambulatory Gait Monitoring System with Activity Classification and Gait Parameter Calculation Based on a Single Foot Inertial Sensor.
    Song M; Kim J
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):885-893. PubMed ID: 28708542
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unrestricted stride detection during stair climbing using IMUs.
    Siebers HL; Siroros N; Alrawashdeh W; Migliorini F; Tingart M; Eschweiler J; Betsch M
    Med Eng Phys; 2021 Jun; 92():10-17. PubMed ID: 34167703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reliability of inertial sensor based spatiotemporal gait parameters for short walking bouts in community dwelling older adults.
    Motti Ader LG; Greene BR; McManus K; Caulfield B
    Gait Posture; 2021 Mar; 85():1-6. PubMed ID: 33497966
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measurement of foot placement and its variability with inertial sensors.
    Rebula JR; Ojeda LV; Adamczyk PG; Kuo AD
    Gait Posture; 2013 Sep; 38(4):974-80. PubMed ID: 23810335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward a Remote Assessment of Walking Bout and Speed: Application in Patients With Multiple Sclerosis.
    Atrsaei A; Dadashi F; Mariani B; Gonzenbach R; Aminian K
    IEEE J Biomed Health Inform; 2021 Nov; 25(11):4217-4228. PubMed ID: 33914688
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Machine-Learning Based Determination of Gait Events from Foot-Mounted Inertial Units.
    Zago M; Tarabini M; Delfino Spiga M; Ferrario C; Bertozzi F; Sforza C; Galli M
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33513999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Validation of distal limb mounted inertial measurement unit sensors for stride detection in Warmblood horses at walk and trot.
    Bragança FM; Bosch S; Voskamp JP; Marin-Perianu M; Van der Zwaag BJ; Vernooij JCM; van Weeren PR; Back W
    Equine Vet J; 2017 Jul; 49(4):545-551. PubMed ID: 27862238
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gait event detection using a thigh-worn accelerometer.
    Gurchiek RD; Garabed CP; McGinnis RS
    Gait Posture; 2020 Jul; 80():214-216. PubMed ID: 32535399
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Head Trajectory Diagrams for Gait Symmetry Analysis Using a Single Head-Worn IMU.
    Hwang TH; Effenberg AO
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.