BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37514884)

  • 1. Comparison of Microwave Hyperthermia Applicator Designs with Fora Dipole and Connected Array.
    Yildiz G; Farhat I; Farrugia L; Bonello J; Zarb-Adami K; Sammut CV; Yilmaz T; Akduman I
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotationally Adjustable Hyperthermia Applicators: A Computational Comparative Study of Circular and Linear Array Applicators.
    Yildiz G; Yilmaz T; Akduman I
    Diagnostics (Basel); 2022 Nov; 12(11):. PubMed ID: 36359518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Silico Study on Tumor-Size-Dependent Thermal Profiles inside an Anthropomorphic Female Breast Phantom Subjected to Multi-Dipole Antenna Array.
    Gas P; Miaskowski A; Subramanian M
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33202658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of six microwave antennas for hyperthermia treatment of cancer: sar results for single antennas and arrays.
    Ryan TP
    Int J Radiat Oncol Biol Phys; 1991 Jul; 21(2):403-13. PubMed ID: 2061117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metamaterial based AMC backed archimedean spiral antenna for in-vitro microwave hyperthermia of skin cancer.
    Kaur K; Kaur A
    Electromagn Biol Med; 2023 Oct; 42(4):163-181. PubMed ID: 38156657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-invasive microwave hyperthermia for bone cancer treatment using realistic bone models and flexible antenna arrays.
    Geyikoglu MD; Cavusoglu B
    Electromagn Biol Med; 2021 Jul; 40(3):353-360. PubMed ID: 34380339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of Ultra-Wideband Phased Array Applicator for Breast Cancer Hyperthermia Therapy.
    Lyu C; Li W; Li S; Mao Y; Yang B
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antenna Excitation Optimization with Deep Learning for Microwave Breast Cancer Hyperthermia.
    Yildiz G; Yasar H; Uslu IE; Demirel Y; Akinci MN; Yilmaz T; Akduman I
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient focusing of microwave hyperthermia for small deep-seated breast tumors treatment using particle swarm optimization.
    Elkayal HA; Ismail NE
    Comput Methods Biomech Biomed Engin; 2021 Jul; 24(9):985-994. PubMed ID: 34132607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antenna Arrangement in UWB Helmet Brain Applicators for Deep Microwave Hyperthermia.
    Zanoli M; Ek E; Dobšíček Trefná H
    Cancers (Basel); 2023 Feb; 15(5):. PubMed ID: 36900238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of Phased Antenna Array Applied in Focused Microwave Breast Hyperthermia.
    Wang X; Xi Z; Ye K; Gong Z; Chen Y; Wang X
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia.
    Chakaravarthi G; Arunachalam K
    Int J Hyperthermia; 2015; 31(7):737-48. PubMed ID: 26365603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Microwave Hyperthermia for Breast Cancer Treatment in a Realistic Environment Using Particle Swarm Optimization.
    Nguyen PT; Abbosh A; Crozier S
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1335-1344. PubMed ID: 28113219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential Evolution Optimization of Microwave Focused Hyperthermia Phased Array Excitation for Targeted Breast Cancer Heating.
    Lyu C; Li W; Yang B
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave Hyperthermia of Brain Tumors: A 2D Assessment Parametric Numerical Study.
    Redr J; Pokorny T; Drizdal T; Fiser O; Brunat M; Vrba J; Vrba D
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical limits of SAR distributions of a four-element square array of dipole-type antennas.
    Fan CJ; Leybovich LB; Devanna WG; Kurup RG
    Med Phys; 1994 Nov; 21(11):1665-70. PubMed ID: 7891625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A head and neck hyperthermia applicator: theoretical antenna array design.
    Paulides MM; Bakker JF; Zwamborn AP; Van Rhoon GC
    Int J Hyperthermia; 2007 Feb; 23(1):59-67. PubMed ID: 17575724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compact self-grounded Bow-Tie antenna design for an UWB phased-array hyperthermia applicator.
    Takook P; Persson M; Gellermann J; Trefná HD
    Int J Hyperthermia; 2017 Jun; 33(4):387-400. PubMed ID: 28064557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Documentation of a New Intracavitary Applicator for Transrectal Hyperthermia Designed for Prostate Cancer Cases: A Phantom Study.
    Kouloulias V; Nikolakopoulou A; Karanasiou I; Antypas C; Armpilia C; Uzunoglou N
    J Med Phys; 2018; 43(2):141-145. PubMed ID: 29962693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical and experimental analysis of air cooling for intracavitary microwave hyperthermia applicators.
    Yeh MM; Trembly BS; Douple EB; Ryan TP; Hoopes PJ; Jonsson E; Heaney JA
    IEEE Trans Biomed Eng; 1994 Sep; 41(9):874-82. PubMed ID: 7959814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.