These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37515461)

  • 1. Effect of muscle pre-tension and pre-impact neck posture on the kinematic response of the cervical spine in simulated low-speed rear impacts.
    Correia MA; Corrales MA; McLachlin SD; Cronin DS
    Int J Numer Method Biomed Eng; 2023 Nov; 39(11):e3761. PubMed ID: 37515461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of control strategies for the cervical muscles of an average female head-neck finite element model.
    Putra IPA; Iraeus J; Thomson R; Svensson MY; Linder A; Sato F
    Traffic Inj Prev; 2019; 20(sup2):S116-S122. PubMed ID: 31617760
    [No Abstract]   [Full Text] [Related]  

  • 3. Importance of passive muscle, skin, and adipose tissue mechanical properties on head and neck response in rear impacts assessed with a finite element model.
    Gierczycka D; Rycman A; Cronin D
    Traffic Inj Prev; 2021; 22(5):407-412. PubMed ID: 34037475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Internal loads in the cervical spine during motor vehicle rear-end impacts: the effect of acceleration and head-to-head restraint proximity.
    Tencer AF; Mirza S; Bensel K
    Spine (Phila Pa 1976); 2002 Jan; 27(1):34-42. PubMed ID: 11805633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Out-of-Position Rear Impact Tissue-Level Investigation Using Detailed Finite Element Neck Model.
    Shateri H; Cronin DS
    Traffic Inj Prev; 2015; 16(7):698-708. PubMed ID: 25664486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of Female Head-Neck Model with Active Reflexive Cervical Muscles in Low Severity Rear Impact Collisions.
    Putra IPA; Iraeus J; Sato F; Svensson MY; Linder A; Thomson R
    Ann Biomed Eng; 2021 Jan; 49(1):115-128. PubMed ID: 32333133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cervical vertebral realignment when voluntarily adopting a protective neck posture.
    Newell RS; Siegmund GP; Blouin JS; Street J; Cripton PA
    Spine (Phila Pa 1976); 2014 Jul; 39(15):E885-93. PubMed ID: 24825155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element modeling of potential cervical spine pain sources in neutral position low speed rear impact.
    Cronin DS
    J Mech Behav Biomed Mater; 2014 May; 33():55-66. PubMed ID: 23466282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Qualitative analysis of neck kinematics during low-speed rear-end impact.
    Luan F; Yang KH; Deng B; Begeman PC; Tashman S; King AI
    Clin Biomech (Bristol, Avon); 2000 Nov; 15(9):649-57. PubMed ID: 10946097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of trunk flexion in healthy volunteers in rear whiplash-type impacts.
    Kumar S; Ferrari R; Narayan Y
    Spine (Phila Pa 1976); 2005 Aug; 30(15):1742-9. PubMed ID: 16094276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of rotated head posture on dynamic vertebral artery elongation during simulated rear impact.
    Ivancic PC; Ito S; Tominaga Y; Carlson EJ; Rubin W; Panjabi MM
    Clin Biomech (Bristol, Avon); 2006 Mar; 21(3):213-20. PubMed ID: 16364516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of cervical spine kinematics and joint capsule strain in rear impacts using a human FE model.
    Kitagawa Y; Yasuki T; Hasegawa J
    Stapp Car Crash J; 2006 Nov; 50():545-66. PubMed ID: 17311176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whiplash-Associated Disorders: Occupant Kinematics and Neck Morphology.
    Stemper BD; Corner BD
    J Orthop Sports Phys Ther; 2016 Oct; 46(10):834-844. PubMed ID: 27690838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cervical spine model to predict capsular ligament response in rear impact.
    Fice JB; Cronin DS; Panzer MB
    Ann Biomed Eng; 2011 Aug; 39(8):2152-62. PubMed ID: 21533673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of whole spine alignment patterns on neck responses in rear end impact.
    Sato F; Odani M; Miyazaki Y; Yamazaki K; Ă–sth J; Svensson M
    Traffic Inj Prev; 2017 Feb; 18(2):199-206. PubMed ID: 27576139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of whiplash injuries in the upper cervical spine using a detailed neck model.
    Fice JB; Cronin DS
    J Biomech; 2012 Apr; 45(6):1098-102. PubMed ID: 22284991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gender- and region-dependent local facet joint kinematics in rear impact: implications in whiplash injury.
    Stemper BD; Yoganandan N; Pintar FA
    Spine (Phila Pa 1976); 2004 Aug; 29(16):1764-71. PubMed ID: 15303020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofidelic whole cervical spine model with muscle force replication for whiplash simulation.
    Ivancic PC; Panjabi MM; Ito S; Cripton PA; Wang JL
    Eur Spine J; 2005 May; 14(4):346-55. PubMed ID: 15480828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of control strategies for VIVA OpenHBM with active reflexive neck muscles.
    Putra IPA; Thomson R
    Biomech Model Mechanobiol; 2022 Dec; 21(6):1731-1742. PubMed ID: 35927540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gender dependent cervical spine segmental kinematics during whiplash.
    Stemper BD; Yoganandan N; Pintar FA
    J Biomech; 2003 Sep; 36(9):1281-9. PubMed ID: 12893036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.