These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37515762)

  • 1. Preparation of mechanically patterned hydrogels for controlling the self-condensation of cells.
    Matsuzaki T; Kawano Y; Horikiri M; Shimokawa Y; Yamazaki T; Okuma N; Koike H; Kimura M; Kawamura R; Yoneyama Y; Furuichi Y; Hakuno F; Takahashi SI; Nakabayashi S; Okamoto S; Nakauchi H; Taniguchi H; Takebe T; Yoshikawa HY
    STAR Protoc; 2023 Sep; 4(3):102471. PubMed ID: 37515762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol to encapsulate cerebral organoids with alginate hydrogel shell to induce volumetric compression.
    Wang Z; Tang X; Khutsishvili D; Sang G; Galan EA; Wang J; Ma S
    STAR Protoc; 2024 Jun; 5(2):102952. PubMed ID: 38555589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protocol to develop force-generating human skeletal muscle organoids.
    Shahriyari M; Rinn M; Hofemeier AD; Babych A; Zimmermann WH; Tiburcy M
    STAR Protoc; 2024 Mar; 5(1):102794. PubMed ID: 38133957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical guidance of self-condensation patterns of differentiating progeny.
    Matsuzaki T; Shimokawa Y; Koike H; Kimura M; Kawano Y; Okuma N; Kawamura R; Yoneyama Y; Furuichi Y; Hakuno F; Takahashi SI; Nakabayashi S; Okamoto S; Nakauchi H; Taniguchi H; Takebe T; Yoshikawa HY
    iScience; 2022 Oct; 25(10):105109. PubMed ID: 36317160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring the elastic modulus of soft culture surfaces and three-dimensional hydrogels using atomic force microscopy.
    Norman MDA; Ferreira SA; Jowett GM; Bozec L; Gentleman E
    Nat Protoc; 2021 May; 16(5):2418-2449. PubMed ID: 33854255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein-Functionalized Poly(ethylene glycol) Hydrogels as Scaffolds for Monolayer Organoid Culture.
    Wilson RL; Swaminathan G; Ettayebi K; Bomidi C; Zeng XL; Blutt SE; Estes MK; Grande-Allen KJ
    Tissue Eng Part C Methods; 2021 Jan; 27(1):12-23. PubMed ID: 33334213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocol to fabricate a self-adhesive and long-term stable hydrogel for sleep EEG recording.
    Hsieh JC; Yao M; Baird B; Wang H
    STAR Protoc; 2024 Jun; 5(2):103097. PubMed ID: 38848219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protocol for serial organoid formation assay using primary colorectal cancer tissues to evaluate cancer stem cell activity.
    Bergin CJ; Benoit YD
    STAR Protoc; 2022 Mar; 3(1):101218. PubMed ID: 35265864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preclinical testing of oncolytic adenovirus sensitivity in patient-derived tumor organoids.
    Pascual-Sabater S; Raimondi G; Mato-Berciano A; Vaquero EC; Ausania F; Fillat C
    STAR Protoc; 2021 Dec; 2(4):101017. PubMed ID: 34950892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of vascularized human cardiac organoids for 3D in vitro modeling.
    Voges HK; Mills RJ; Porrello ER; Hudson JE
    STAR Protoc; 2023 Sep; 4(3):102371. PubMed ID: 37384522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomaterial-guided stem cell organoid engineering for modeling development and diseases.
    Hoang P; Ma Z
    Acta Biomater; 2021 Sep; 132():23-36. PubMed ID: 33486104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protocols for SARS-CoV-2 infection in primary ocular cells and eye organoids.
    Eriksen AZ; Møller R; Makovoz B; tenOever BR; Blenkinsop TA
    STAR Protoc; 2022 Jun; 3(2):101383. PubMed ID: 35664254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatible micro tweezers for 3D hydrogel organoid array mechanical characterization.
    Alhudaithy S; Hoshino K
    PLoS One; 2022; 17(1):e0262950. PubMed ID: 35073389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PDMS hydrogel-coated tissue culture plates for studying the impact of substrate stiffness on dendritic cell function.
    Lee M; Chu K; Chakraborty M; Kotoulas N; Akbari M; Goh C; Clemente-Casares X; Winer DA; Shrestha A; Tsai S
    STAR Protoc; 2022 Jun; 3(2):101233. PubMed ID: 35313712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Obtaining purified human intestinal epithelia for single-cell analysis and organoid culture.
    Ross ADB; Perrone F; Elmentaite R; Teichmann SA; Zilbauer M
    STAR Protoc; 2021 Jun; 2(2):100597. PubMed ID: 34169291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protocol for the application of single-cell damage in murine intestinal organoid models.
    Seidler AE; Donath S; Gentemann L; Buettner M; Heisterkamp A; Kalies S
    STAR Protoc; 2024 Sep; 5(3):103153. PubMed ID: 39088328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protocol for live imaging of bacteria-cell interactions in genetically modified mouse small intestinal organoids.
    Kim M; Fèvre C; Lavina M; Disson O; Lecuit M
    STAR Protoc; 2024 Mar; 5(1):102773. PubMed ID: 38103194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioprinting of heterogeneous and multilayered cell-hydrogel constructs using continuous multi-material printing and aerosol-based crosslinking.
    Lee G; Kim SJ; Park JK
    STAR Protoc; 2022 Jun; 3(2):101303. PubMed ID: 35496807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Normal and tumor-derived organoids as a drug screening platform for tumor-specific drug vulnerabilities.
    Calandrini C; Drost J
    STAR Protoc; 2022 Mar; 3(1):101079. PubMed ID: 35036959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protocol for designing and bioprinting multi-layered constructs to reconstruct an endothelial-epithelial 3D model.
    Backes EH; Zamproni LN; Delgado-Garcia LM; Pinto LA; Lemes RMR; Bartolomeo CS; Porcionatto MA
    STAR Protoc; 2023 Sep; 4(3):102467. PubMed ID: 37585294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.