These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37515873)

  • 1. Vibro-acoustic sensing of tissue-instrument-interactions allows a differentiation of biological tissue in computerised palpation.
    Sühn T; Esmaeili N; Spiller M; Costa M; Boese A; Bertrand J; Pandey A; Lohmann C; Friebe M; Illanes A
    Comput Biol Med; 2023 Sep; 164():107272. PubMed ID: 37515873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibro-Acoustic Sensing of Instrument Interactions as a Potential Source of Texture-Related Information in Robotic Palpation.
    Sühn T; Esmaeili N; Mattepu SY; Spiller M; Boese A; Urrutia R; Poblete V; Hansen C; Lohmann CH; Illanes A; Friebe M
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An autoclavable wireless palpation instrument for minimally invasive surgery.
    Naidu AS; Escoto A; Fahmy O; Patel RV; Naish MD
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6489-6492. PubMed ID: 28269733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Texture differentiation using audio signal analysis with robotic interventional instruments.
    Chen CH; Sühn T; Kalmar M; Maldonado I; Wex C; Croner R; Boese A; Friebe M; Illanes A
    Comput Biol Med; 2019 Sep; 112():103370. PubMed ID: 31374348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tactile sensor using the acoustic reflection principle for assessing the contact force component in laparoscopic tumor localization.
    Ly HH; Tanaka Y; Fujiwara M
    Int J Comput Assist Radiol Surg; 2021 Feb; 16(2):289-299. PubMed ID: 33389604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial palpation in robotic surgery using haptic feedback.
    Abiri A; Juo YY; Tao A; Askari SJ; Pensa J; Bisley JW; Dutson EP; Grundfest WS
    Surg Endosc; 2019 Apr; 33(4):1252-1259. PubMed ID: 30187198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of force reflection with tactile sensing for minimally invasive robotics-assisted tumor localization.
    Talasaz A; Patel RV
    IEEE Trans Haptics; 2013; 6(2):217-28. PubMed ID: 24808305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic resonance imaging-compatible tactile sensing device based on a piezoelectric array.
    Hamed A; Masamune K; Tse ZT; Lamperth M; Dohi T
    Proc Inst Mech Eng H; 2012 Jul; 226(7):565-75. PubMed ID: 22913103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic signal analysis of instrument-tissue interaction for minimally invasive interventions.
    Ostler D; Seibold M; Fuchtmann J; Samm N; Feussner H; Wilhelm D; Navab N
    Int J Comput Assist Radiol Surg; 2020 May; 15(5):771-779. PubMed ID: 32323212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of stochastic resonance methods for improving laparoscopic surgery performance.
    Hoskins R; Wang J; Cao CG
    Surg Endosc; 2016 Oct; 30(10):4214-9. PubMed ID: 26721693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial tactile sensing in minimally invasive surgery - a new technical approach.
    Schostek S; Ho CN; Kalanovic D; Schurr MO
    Minim Invasive Ther Allied Technol; 2006; 15(5):296-304. PubMed ID: 17062404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction Force Mapping by 3-Axis Tactile Sensing With Arbitrary Angles for Tissue Hard-Inclusion Localization.
    Li T; Pan A; Ren H
    IEEE Trans Biomed Eng; 2021 Jan; 68(1):26-35. PubMed ID: 32396067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grasper having tactile sensing function using acoustic reflection for laparoscopic surgery.
    Ly HH; Tanaka Y; Fukuda T; Sano A
    Int J Comput Assist Radiol Surg; 2017 Aug; 12(8):1333-1343. PubMed ID: 28455766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Texture-based Intraoperative Image Guidance for Tumor Localization in Minimally Invasive Surgery.
    Shamsil A; Naish MD; Patel RV
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3526-3530. PubMed ID: 34892000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force-feedback grasper helps restore sense of touch in minimally invasive surgery.
    MacFarlane M; Rosen J; Hannaford B; Pellegrini C; Sinanan M
    J Gastrointest Surg; 1999; 3(3):278-85. PubMed ID: 10481120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defining the role of haptic feedback in minimally invasive surgery.
    Bholat OS; Haluck RS; Kutz RH; Gorman PJ; Krummel TM
    Stud Health Technol Inform; 1999; 62():62-6. PubMed ID: 10538400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Palpation-Based Multi-Tumor Detection Method Considering Moving Distance for Robot-assisted Minimally Invasive Surgery.
    Yun Y; Ju F; Zhang Y; Zhu C; Wang Y; Guo H; Wei X; Chen B
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4899-4902. PubMed ID: 33019087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-Contact Vibro-Acoustic Object Recognition Using Laser Doppler Vibrometry and Convolutional Neural Networks.
    Darwish A; Halkon B; Oberst S
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.
    Moradi Dalvand M; Shirinzadeh B; Nahavandi S; Smith J
    Minim Invasive Ther Allied Technol; 2014 Jun; 23(3):127-35. PubMed ID: 24328984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force-Sensorless Identification and Classification of Tissue Biomechanical Parameters for Robot-Assisted Palpation.
    Gutierrez-Giles A; Padilla-Castañeda MA; Alvarez-Icaza L; Gutierrez-Herrera E
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.