BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 37516065)

  • 1. Rapid and nondestructive identification of adulterate capsules by NIR spectroscopy combined with chemometrics.
    Huang Z; Zhou G; Wang X; Wang T; Zhang H; Wang Z; Zhu B; Li W
    J Pharm Biomed Anal; 2023 Oct; 235():115597. PubMed ID: 37516065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid identification and determination of adulteration in medicinal Arnebiae Radix by combining near infrared spectroscopy with chemometrics.
    Li X; Zhong Y; Li J; Lin Z; Pei Y; Dai S; Sun F
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Oct; 318():124437. PubMed ID: 38772180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nondestructive qualitative and quantitative analysis of Yaobitong capsule using near-infrared spectroscopy in tandem with chemometrics.
    Si L; Ni H; Pan D; Zhang X; Xu F; Wu Y; Bao L; Wang Z; Xiao W; Wu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 252():119517. PubMed ID: 33578123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What's in this drink? Classification and adulterant detection in Irish Whiskey samples using near infrared spectroscopy combined with chemometrics.
    Power AC; Jones J; NiNeil C; Geoghegan S; Warren S; Currivan S; Cozzolino D
    J Sci Food Agric; 2021 Sep; 101(12):5256-5263. PubMed ID: 33616203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Authentication and Quality Evaluation of Cinnamomum verum Powder Using Near-Infrared Spectroscopy and Multivariate Analyses.
    Shawky E; Selim DA
    Planta Med; 2018 Dec; 84(18):1380-1387. PubMed ID: 30068001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of near-infrared (NIR) and mid-infrared (MIR) spectroscopy based on chemometrics for saffron authentication and adulteration detection.
    Amirvaresi A; Nikounezhad N; Amirahmadi M; Daraei B; Parastar H
    Food Chem; 2021 May; 344():128647. PubMed ID: 33229154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid quantification of honey adulteration by visible-near infrared spectroscopy combined with chemometrics.
    Ferreiro-González M; Espada-Bellido E; Guillén-Cueto L; Palma M; Barroso CG; Barbero GF
    Talanta; 2018 Oct; 188():288-292. PubMed ID: 30029378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Portable near-infrared (NIR) spectrometer and chemometrics for rapid identification of butter cheese adulteration.
    Medeiros MLDS; Freitas Lima A; Correia Gonçalves M; Teixeira Godoy H; Fernandes Barbin D
    Food Chem; 2023 Nov; 425():136461. PubMed ID: 37285626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid identification and quantification of Panax notoginseng with its adulterants by near infrared spectroscopy combined with chemometrics.
    Liu P; Wang J; Li Q; Gao J; Tan X; Bian X
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():23-30. PubMed ID: 30077893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Untargeted detection and quantitative analysis of poplar balata (PB) in Chinese propolis by FT-NIR spectroscopy and chemometrics.
    Xu L; Yan SM; Cai CB; Yu XP
    Food Chem; 2013 Dec; 141(4):4132-7. PubMed ID: 23993596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of the Adulteration of Dendrobium Huoshanense with Dendrobium Henanense by UV-Vis-Shortwave Near-Infrared Diffuse Reflectance Spectroscopy Combined with Chemometrics.
    Hao JW; Chen ND; Liu XQ; Li Q; Xu HM; Yang WH; Qin CF; Bu YQ
    J AOAC Int; 2024 Jan; 107(1):158-163. PubMed ID: 37531289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid analysis of adulterations in Chinese lotus root powder (LRP) by near-infrared (NIR) spectroscopy coupled with chemometric class modeling techniques.
    Xu L; Shi PT; Ye ZH; Yan SM; Yu XP
    Food Chem; 2013 Dec; 141(3):2434-9. PubMed ID: 23870978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid detection and quantification of adulteration in Chinese hawthorn fruits powder by near-infrared spectroscopy combined with chemometrics.
    Sun X; Li H; Yi Y; Hua H; Guan Y; Chen C
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Apr; 250():119346. PubMed ID: 33387806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-destructive determination of grass pea and pea flour adulteration in chickpea flour using near-infrared reflectance spectroscopy and chemometrics.
    Bala M; Sethi S; Sharma S; Mridula D; Kaur G
    J Sci Food Agric; 2023 Feb; 103(3):1294-1302. PubMed ID: 36098480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid detection and quantification of adulteration in saffron by excitation-emission matrix fluorescence combined with multi-way chemometrics.
    Chen Y; Wu HL; Wang T; Wu JN; Liu BB; Ding YJ; Yu RQ
    J Sci Food Agric; 2024 Feb; 104(3):1391-1398. PubMed ID: 37801402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protected Geographical Indication Discrimination of Zhejiang and Non-Zhejiang
    Ji Q; Li C; Fu X; Liao J; Hong X; Yu X; Ye Z; Zhang M; Qiu Y
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-Targeted Detection of Adulterants in Almond Powder Using Spectroscopic Techniques Combined with Chemometrics.
    Faqeerzada MA; Lohumi S; Joshi R; Kim MS; Baek I; Cho BK
    Foods; 2020 Jul; 9(7):. PubMed ID: 32635277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid detection of adulteration in powder of ginger (
    Yu DX; Guo S; Zhang X; Yan H; Zhang ZY; Chen X; Chen JY; Jin SJ; Yang J; Duan JA
    Food Chem X; 2022 Oct; 15():100450. PubMed ID: 36211746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic techniques combined with chemometrics for fast on-site characterization of suspected illegal antimicrobials.
    Tie Y; Duchateau C; Van de Steene S; Mees C; De Braekeleer K; De Beer T; Adams E; Deconinck E
    Talanta; 2020 Sep; 217():121026. PubMed ID: 32498874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid detection of adulteration of olive oil with soybean oil combined with chemometrics by Fourier transform infrared, visible-near-infrared and excitation-emission matrix fluorescence spectroscopy: A comparative study.
    Meng X; Yin C; Yuan L; Zhang Y; Ju Y; Xin K; Chen W; Lv K; Hu L
    Food Chem; 2023 Mar; 405(Pt A):134828. PubMed ID: 36370570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.