These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 37516110)

  • 1. Molecular de-extinction of ancient antimicrobial peptides enabled by machine learning.
    Maasch JRMA; Torres MDT; Melo MCR; de la Fuente-Nunez C
    Cell Host Microbe; 2023 Aug; 31(8):1260-1274.e6. PubMed ID: 37516110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep-learning-enabled antibiotic discovery through molecular de-extinction.
    Wan F; Torres MDT; Peng J; de la Fuente-Nunez C
    Nat Biomed Eng; 2024 Jul; 8(7):854-871. PubMed ID: 38862735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mining for encrypted peptide antibiotics in the human proteome.
    Torres MDT; Melo MCR; Flowers L; Crescenzi O; Notomista E; de la Fuente-Nunez C
    Nat Biomed Eng; 2022 Jan; 6(1):67-75. PubMed ID: 34737399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning-Driven Discovery and Evaluation of Antimicrobial Peptides from
    Song J; Liu K; Jin X; Huang K; Fu S; Yi W; Cai Y; Yu Z; Mao F; Zhang Y
    Mar Drugs; 2024 Aug; 22(9):. PubMed ID: 39330266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning Prediction of Antimicrobial Peptides.
    Wang G; Vaisman II; van Hoek ML
    Methods Mol Biol; 2022; 2405():1-37. PubMed ID: 35298806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial and Anti-Inflammatory Activities of MAF-1-Derived Antimicrobial Peptide Mt6 and Its D-Enantiomer D-Mt6 against Acinetobacter baumannii by Targeting Cell Membranes and Lipopolysaccharide Interaction.
    Kong D; Hua X; Zhou R; Cui J; Wang T; Kong F; You H; Liu X; Adu-Amankwaah J; Guo G; Zheng K; Wu J; Tang R
    Microbiol Spectr; 2022 Oct; 10(5):e0131222. PubMed ID: 36190276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic Antibiotic Derived from Sequences Encrypted in a Protein from Human Plasma.
    Cesaro A; Torres MDT; Gaglione R; Dell'Olmo E; Di Girolamo R; Bosso A; Pizzo E; Haagsman HP; Veldhuizen EJA; de la Fuente-Nunez C; Arciello A
    ACS Nano; 2022 Feb; 16(2):1880-1895. PubMed ID: 35112568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seeking old wisdoms for new AMP discovery.
    Wang J
    Cell Host Microbe; 2023 Aug; 31(8):1251-1253. PubMed ID: 37562358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic Potential of Antimicrobial Peptide PN5 against Multidrug-Resistant E. coli and Anti-Inflammatory Activity in a Septic Mouse Model.
    Kang DD; Park J; Park Y
    Microbiol Spectr; 2022 Oct; 10(5):e0149422. PubMed ID: 36129300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting stability and therapeutic potential of proteolysis-resistant antimicrobial peptides by end-tagging β-naphthylalanine.
    He S; Yang Z; Li X; Wu H; Zhang L; Shan A; Wang J
    Acta Biomater; 2023 Jul; 164():175-194. PubMed ID: 37100185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bactericidal activities and action mechanism of the novel antimicrobial peptide Hylin a1 and its analog peptides against Acinetobacter baumannii infection.
    Park HJ; Kang HK; Park E; Kim MK; Park Y
    Eur J Pharm Sci; 2022 Aug; 175():106205. PubMed ID: 35561952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of antimicrobial peptides in the global microbiome with machine learning.
    Santos-Júnior CD; Torres MDT; Duan Y; Rodríguez Del Río Á; Schmidt TSB; Chong H; Fullam A; Kuhn M; Zhu C; Houseman A; Somborski J; Vines A; Zhao XM; Bork P; Huerta-Cepas J; de la Fuente-Nunez C; Coelho LP
    Cell; 2024 Jul; 187(14):3761-3778.e16. PubMed ID: 38843834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning-enabled discovery and design of membrane-active peptides.
    Lee EY; Wong GCL; Ferguson AL
    Bioorg Med Chem; 2018 Jun; 26(10):2708-2718. PubMed ID: 28728899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of potent antimicrobial peptides via a machine-learning pipeline that mines the entire space of peptide sequences.
    Huang J; Xu Y; Xue Y; Huang Y; Li X; Chen X; Xu Y; Zhang D; Zhang P; Zhao J; Ji J
    Nat Biomed Eng; 2023 Jun; 7(6):797-810. PubMed ID: 36635418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mining human microbiomes reveals an untapped source of peptide antibiotics.
    Torres MDT; Brooks EF; Cesaro A; Sberro H; Gill MO; Nicolaou C; Bhatt AS; de la Fuente-Nunez C
    Cell; 2024 Sep; 187(19):5453-5467.e15. PubMed ID: 39163860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current synthetic chemistry towards cyclic antimicrobial peptides.
    He T; Qu R; Zhang J
    J Pept Sci; 2022 Jun; 28(6):e3387. PubMed ID: 34931393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Waste to resource: Mining antimicrobial peptides in sludge from metagenomes using machine learning.
    Xu J; Xu X; Jiang Y; Fu Y; Shen C
    Environ Int; 2024 Apr; 186():108574. PubMed ID: 38507933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerating antibiotic discovery through artificial intelligence.
    Melo MCR; Maasch JRMA; de la Fuente-Nunez C
    Commun Biol; 2021 Sep; 4(1):1050. PubMed ID: 34504303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catastrophic selection: the other side of the coin.
    de la Fuente J
    Ann Med; 2024 Dec; 56(1):2391014. PubMed ID: 39140291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning Accelerates De Novo Design of Antimicrobial Peptides.
    Yin K; Xu W; Ren S; Xu Q; Zhang S; Zhang R; Jiang M; Zhang Y; Xu D; Li R
    Interdiscip Sci; 2024 Jun; 16(2):392-403. PubMed ID: 38416364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.