BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37516192)

  • 21. The impact of storm events on a riverbed system and its hydraulic conductivity at a site of induced infiltration.
    Levy J; Birck MD; Mutiti S; Kilroy KC; Windeler B; Idris O; Allen LN
    J Environ Manage; 2011 Aug; 92(8):1960-71. PubMed ID: 21492996
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Difference in attenuation among Mn, As, and Fe in riverbed sediments.
    Sengupta S; Sracek O; Jean JS; Yang HJ; Wang CH; Kar S; Babek O; Lee CY; Das S
    J Hazard Mater; 2018 Jan; 341():277-289. PubMed ID: 28803052
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Laboratory and field study on changes in water quality and increase in dissolved iron during riverbank filtration.
    Ahn JY; Hwang I; Park N; Park SH
    Environ Sci Pollut Res Int; 2021 Sep; 28(36):50142-50152. PubMed ID: 33950421
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon and methane cycling in arsenic-contaminated aquifers.
    Stopelli E; Duyen VT; Prommer H; Glodowska M; Kappler A; Schneider M; Eiche E; Lightfoot AK; Schubert CJ; Trang PKT; Viet PH; Kipfer R; Winkel LHE; Berg M;
    Water Res; 2021 Jul; 200():117300. PubMed ID: 34107428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fate and transport of TNT, RDX, and HMX in streambed sediments: Implications for riverbank filtration.
    Zheng W; Lichwa J; D'Alessio M; Ray C
    Chemosphere; 2009 Aug; 76(9):1167-77. PubMed ID: 19619888
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sources and behavior of ammonium during riverbank filtration.
    Covatti G; Grischek T
    Water Res; 2021 Mar; 191():116788. PubMed ID: 33422978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elevated arsenic and manganese in groundwaters of Murshidabad, West Bengal, India.
    Sankar MS; Vega MA; Defoe PP; Kibria MG; Ford S; Telfeyan K; Neal A; Mohajerin TJ; Hettiarachchi GM; Barua S; Hobson C; Johannesson K; Datta S
    Sci Total Environ; 2014 Aug; 488-489():570-9. PubMed ID: 24694939
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessing the impact of VOC-contaminated groundwater on surface water at the city scale.
    Ellis PA; Rivett MO
    J Contam Hydrol; 2007 Apr; 91(1-2):107-27. PubMed ID: 17182150
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical controls on abiotic and biotic release of geogenic arsenic from Pleistocene aquifer sediments to groundwater.
    Gillispie EC; Andujar E; Polizzotto ML
    Environ Sci Process Impacts; 2016 Aug; 18(8):1090-103. PubMed ID: 27463026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical and mineralogical variability of sediment in a Quaternary aquifer from Huaihe River Basin, China: Implications for groundwater arsenic source and its mobilization.
    Xu N; Zhang F; Xu N; Li L; Liu L
    Sci Total Environ; 2023 Mar; 865():160864. PubMed ID: 36526174
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydraulic and hydrogeochemical characteristics of a riverbank filtration site in rural India.
    Boving TB; Choudri BS; Cady P; Cording A; Patil K; Reddy V
    Water Environ Res; 2014 Jul; 86(7):636-48. PubMed ID: 25112031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact process of the aquitard to regional arsenic accumulation of the underlying aquifer in Central Yangtze River Basin.
    Xiao C; Ma T; Du Y; Liu Y; Liu R; Zhang D; Chen J
    Environ Geochem Health; 2021 Mar; 43(3):1091-1107. PubMed ID: 32839956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Geogenic arsenic and other trace elements in the shallow hydrogeologic system of Southern Poopó Basin, Bolivian Altiplano.
    Ormachea Muñoz M; Wern H; Johnsson F; Bhattacharya P; Sracek O; Thunvik R; Quintanilla J; Bundschuh J
    J Hazard Mater; 2013 Nov; 262():924-40. PubMed ID: 24091126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatiotemporal analysis of bacterial biomass and activity to understand surface and groundwater interactions in a highly dynamic riverbank filtration system.
    van Driezum IH; Chik AHS; Jakwerth S; Lindner G; Farnleitner AH; Sommer R; Blaschke AP; Kirschner AKT
    Sci Total Environ; 2018 Jun; 627():450-461. PubMed ID: 29426167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatiotemporal resolved sampling for the interpretation of micropollutant removal during riverbank filtration.
    van Driezum IH; Derx J; Oudega TJ; Zessner M; Naus FL; Saracevic E; Kirschner AKT; Sommer R; Farnleitner AH; Blaschke AP
    Sci Total Environ; 2019 Feb; 649():212-223. PubMed ID: 30173030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Remarks on the current quality of groundwater in Vietnam.
    Le Luu T
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1163-1169. PubMed ID: 28741204
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aquifer Arsenic Cycling Induced by Seasonal Hydrologic Changes within the Yangtze River Basin.
    Schaefer MV; Ying SC; Benner SG; Duan Y; Wang Y; Fendorf S
    Environ Sci Technol; 2016 Apr; 50(7):3521-9. PubMed ID: 26788939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arsenic releasing characteristics during the compaction of muddy sediments.
    Xiao C; Ma T; Du Y; Yu H; Shen S
    Environ Sci Process Impacts; 2016 Oct; 18(10):1297-1304. PubMed ID: 27711833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Arsenic in the multi-aquifer system of the Mekong Delta, Vietnam: analysis of large-scale spatial trends and controlling factors.
    Erban LE; Gorelick SM; Fendorf S
    Environ Sci Technol; 2014 Jun; 48(11):6081-8. PubMed ID: 24849074
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arsenic in groundwater and sediment in the Mekong River delta, Vietnam.
    Hoang TH; Bang S; Kim KW; Nguyen MH; Dang DM
    Environ Pollut; 2010 Aug; 158(8):2648-58. PubMed ID: 20605297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.