These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 37516489)
1. Cerebral microbleeds. Utility of SWI sequences. Martínez Camblor L; Peña Suárez JM; Martínez-Cachero García M; Santamarta Liébana E; Rodríguez Castro J; Saiz Ayala A Radiologia (Engl Ed); 2023; 65(4):362-375. PubMed ID: 37516489 [TBL] [Abstract][Full Text] [Related]
2. Susceptibility-weighted imaging is more reliable than T2*-weighted gradient-recalled echo MRI for detecting microbleeds. Cheng AL; Batool S; McCreary CR; Lauzon ML; Frayne R; Goyal M; Smith EE Stroke; 2013 Oct; 44(10):2782-6. PubMed ID: 23920014 [TBL] [Abstract][Full Text] [Related]
3. Comparison of ESWAN, SWI-SPGR, and 2D T2*-weighted GRE sequence for depicting cerebral microbleeds. Guo LF; Wang G; Zhu XY; Liu C; Cui L Clin Neuroradiol; 2013 Jun; 23(2):121-7. PubMed ID: 23212660 [TBL] [Abstract][Full Text] [Related]
4. The use of susceptibility-weighted imaging to detect cerebral microbleeds after lacunar infarction. Shao L; Wang M; Ge XH; Huang HD; Gao L; Qin JC Eur Rev Med Pharmacol Sci; 2017 Jul; 21(13):3105-3112. PubMed ID: 28742195 [TBL] [Abstract][Full Text] [Related]
5. Improved cerebral microbleeds detection using their magnetic signature on T2*-phase-contrast: A comparison study in a clinical setting. Kaaouana T; Bertrand A; Ouamer F; Law-Ye B; Pyatigorskaya N; Bouyahia A; Thiery N; Dufouil C; Delmaire C; Dormont D; de Rochefort L; Chupin M Neuroimage Clin; 2017; 15():274-283. PubMed ID: 28560152 [TBL] [Abstract][Full Text] [Related]
6. Cerebral Microbleeds Remain for Nine Years: A Prospective Study with Yearly Magnetic Resonance Imaging. Saito T; Kawamura Y; Sato N; Sugiyama E; Okada M; Takeuchi T; Akasaka K; Hasebe N J Stroke Cerebrovasc Dis; 2018 Feb; 27(2):315-320. PubMed ID: 28969880 [TBL] [Abstract][Full Text] [Related]
7. Evaluating the use of gradient echo imaging for the detection of cerebral microbleeds in acute stroke cases: A retrospective data analysis in a UK stroke unit. Walsh G; Meagher T; Malamateniou C Radiography (Lond); 2021 May; 27(2):561-567. PubMed ID: 33281036 [TBL] [Abstract][Full Text] [Related]
8. Wave-CAIPI susceptibility-weighted imaging achieves diagnostic performance comparable to conventional susceptibility-weighted imaging in half the scan time. Chung MS; Lee EJ; Kim S; Kim SO; Byun JS Eur Radiol; 2020 Apr; 30(4):2182-2190. PubMed ID: 31953660 [TBL] [Abstract][Full Text] [Related]
9. DeepSWI: Using Deep Learning to Enhance Susceptibility Contrast on T2*-Weighted MRI. Genc O; Morrison MA; Villanueva-Meyer JE; Burns B; Hess CP; Banerjee S; Lupo JM J Magn Reson Imaging; 2023 Oct; 58(4):1200-1210. PubMed ID: 36733222 [TBL] [Abstract][Full Text] [Related]
10. Assessment of cerebral microbleeds by susceptibility-weighted imaging at 3T in patients with end-stage organ failure. Sparacia G; Cannella R; Lo Re V; Gambino A; Mamone G; Miraglia R Radiol Med; 2018 Jun; 123(6):441-448. PubMed ID: 29455423 [TBL] [Abstract][Full Text] [Related]
11. Accuracy of SWI sequences compared to T2*-weighted gradient echo sequences in the detection of cerebral cavernous malformations in the familial form. Sparacia G; Speciale C; Banco A; Bencivinni F; Midiri M Neuroradiol J; 2016 Oct; 29(5):326-35. PubMed ID: 27549150 [TBL] [Abstract][Full Text] [Related]
12. High incidence of asymptomatic cerebral microbleeds in patients with hemorrhagic onset-type moyamoya disease: a phase-sensitive MRI study and meta-analysis. Qin Y; Ogawa T; Fujii S; Shinohara Y; Kitao S; Miyoshi F; Takasugi M; Watanabe T; Kaminou T Acta Radiol; 2015 Mar; 56(3):329-38. PubMed ID: 24558166 [TBL] [Abstract][Full Text] [Related]
13. 2D harmonic filtering of MR phase images in multicenter clinical setting: toward a magnetic signature of cerebral microbleeds. Kaaouana T; de Rochefort L; Samaille T; Thiery N; Dufouil C; Delmaire C; Dormont D; Chupin M Neuroimage; 2015 Jan; 104():287-300. PubMed ID: 25149849 [TBL] [Abstract][Full Text] [Related]
15. Cerebral microbleeds: a magnetic resonance imaging review of common and less common causes. Renard D Eur J Neurol; 2018 Mar; 25(3):441-450. PubMed ID: 29222944 [TBL] [Abstract][Full Text] [Related]
17. Risk factors of radiotherapy-induced cerebral microbleeds and serial analysis of their size compared with white matter changes: A 7T MRI study in 113 adult patients with brain tumors. Morrison MA; Hess CP; Clarke JL; Butowski N; Chang SM; Molinaro AM; Lupo JM J Magn Reson Imaging; 2019 Sep; 50(3):868-877. PubMed ID: 30663150 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous imaging of radiation-induced cerebral microbleeds, arteries and veins, using a multiple gradient echo sequence at 7 Tesla. Bian W; Banerjee S; Kelly DA; Hess CP; Larson PE; Chang SM; Nelson SJ; Lupo JM J Magn Reson Imaging; 2015 Aug; 42(2):269-79. PubMed ID: 25471321 [TBL] [Abstract][Full Text] [Related]
19. Cerebral microbleeds, cognitive impairment, and MRI in patients with diabetes mellitus. Zhou H; Yang J; Xie P; Dong Y; You Y; Liu J Clin Chim Acta; 2017 Jul; 470():14-19. PubMed ID: 28450131 [TBL] [Abstract][Full Text] [Related]
20. Clinical relevance of improved microbleed detection by susceptibility-weighted magnetic resonance imaging. Goos JD; van der Flier WM; Knol DL; Pouwels PJ; Scheltens P; Barkhof F; Wattjes MP Stroke; 2011 Jul; 42(7):1894-900. PubMed ID: 21566235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]