BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

546 related articles for article (PubMed ID: 37516849)

  • 21. Prostate Cancer Immunotherapy-Finally in From the Cold?
    Runcie KD; Dallos MC
    Curr Oncol Rep; 2021 Jun; 23(8):88. PubMed ID: 34125308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biological effects of IL-21 on immune cells and its potential for cancer treatment.
    Ma M; Xie Y; Liu J; Wu L; Liu Y; Qin X
    Int Immunopharmacol; 2024 Jan; 126():111154. PubMed ID: 37977064
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeted cytokines for cancer immunotherapy.
    Lode HN; Reisfeld RA
    Immunol Res; 2000; 21(2-3):279-88. PubMed ID: 10852128
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CD25: A potential tumor therapeutic target.
    Peng Y; Tao Y; Zhang Y; Wang J; Yang J; Wang Y
    Int J Cancer; 2023 Apr; 152(7):1290-1303. PubMed ID: 36082452
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting the Tumor Microenvironment by Intervention in Interleukin-1 Biology.
    Voronov E; Apte RN
    Curr Pharm Des; 2017; 23(32):4893-4905. PubMed ID: 28606052
    [TBL] [Abstract][Full Text] [Related]  

  • 26. IL-10 and sIL-2R serum levels as possible peripheral blood prognostic markers in the passage from adenoma to colorectal cancer.
    Berghella AM; Pellegrini P; Del Beato T; Adorno D; Casciani CU
    Cancer Biother Radiopharm; 1997 Aug; 12(4):265-72. PubMed ID: 10851474
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chronic effects of subcutaneous interleukin-2 therapy on soluble interleukin-2 receptors in advanced small cell lung cancer.
    Viviani S; Salvini PM; Bidoli P; Camerini E; Spinazzé S; Arienti F; Rivoltini L; Motta V
    Int J Biol Markers; 1993; 8(1):21-4. PubMed ID: 8388428
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The biology of interleukin-2.
    Malek TR
    Annu Rev Immunol; 2008; 26():453-79. PubMed ID: 18062768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. IL-33/ST2 as a potential target for tumor immunotherapy.
    Jiang W; Lian J; Yue Y; Zhang Y
    Eur J Immunol; 2021 Aug; 51(8):1943-1955. PubMed ID: 34131922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immune microenvironment of cervical cancer and the role of IL-2 in tumor promotion.
    Trujillo-Cirilo L; Weiss-Steider B; Vargas-Angeles CA; Corona-Ortega MT; Rangel-Corona R
    Cytokine; 2023 Oct; 170():156334. PubMed ID: 37598478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increase in soluble interleukin-2 receptor and neopterin serum levels during immunotherapy of cancer with interleukin-2.
    Lissoni P; Tisi E; Brivio F; Barni S; Rovelli F; Perego M; Tancini G
    Eur J Cancer; 1991; 27(8):1014-6. PubMed ID: 1832885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnetic-Manipulated NK Cell Proliferation and Activation Enhance Immunotherapy of Orthotopic Liver Cancer.
    Jiang H; Fu H; Min T; Hu P; Shi J
    J Am Chem Soc; 2023 Jun; 145(24):13147-13160. PubMed ID: 37262421
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular basis of Trypanosoma cruzi-induced immunosuppression. Altered expression by activated human lymphocytes of molecules which regulate antigen recognition and progression through the cell cycle.
    Kierszenbaum F; Moretti E; Sztein MB
    Biol Res; 1993; 26(1-2):197-207. PubMed ID: 7670532
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms of regulatory T cell infiltration in tumors: implications for innovative immune precision therapies.
    Nishikawa H; Koyama S
    J Immunother Cancer; 2021 Jul; 9(7):. PubMed ID: 34330764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy.
    Kim J; Hong J; Lee J; Fakhraei Lahiji S; Kim YH
    J Control Release; 2021 Apr; 332():109-126. PubMed ID: 33571549
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeting interleukin-22 for cancer therapy.
    Markota A; Endres S; Kobold S
    Hum Vaccin Immunother; 2018; 14(8):2012-2015. PubMed ID: 29617184
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immunosuppressive tumor microenvironment modulation by chemotherapies and targeted therapies to enhance immunotherapy effectiveness.
    Barnestein R; Galland L; Kalfeist L; Ghiringhelli F; Ladoire S; Limagne E
    Oncoimmunology; 2022; 11(1):2120676. PubMed ID: 36117524
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pan-cancer analysis reveals interleukin-17 family members as biomarkers in the prediction for immune checkpoint inhibitor curative effect.
    Han X; Ye J; Huang R; Li Y; Liu J; Meng T; Song D
    Front Immunol; 2022; 13():900273. PubMed ID: 36159856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Checkpoint blockade-based immunotherapy in the context of tumor microenvironment: Opportunities and challenges.
    Duan J; Wang Y; Jiao S
    Cancer Med; 2018 Sep; 7(9):4517-4529. PubMed ID: 30088347
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Signaling new therapeutic opportunities: cytokines in prostate cancer.
    Chandran E; Meininger L; Karzai F; Madan RA
    Expert Opin Biol Ther; 2022 Oct; 22(10):1233-1243. PubMed ID: 35930001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.