BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37517046)

  • 21. Large chromosomal rearrangements during a long-term evolution experiment with Escherichia coli.
    Raeside C; Gaffé J; Deatherage DE; Tenaillon O; Briska AM; Ptashkin RN; Cruveiller S; Médigue C; Lenski RE; Barrick JE; Schneider D
    mBio; 2014 Sep; 5(5):e01377-14. PubMed ID: 25205090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome rearrangement distances and gene order phylogeny in gamma-Proteobacteria.
    Belda E; Moya A; Silva FJ
    Mol Biol Evol; 2005 Jun; 22(6):1456-67. PubMed ID: 15772379
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rearrangement distance with reversals, indels, and moves in intergenic regions on signed and unsigned permutations.
    Brito KL; Oliveira AR; Alexandrino AO; Dias U; Dias Z
    J Bioinform Comput Biol; 2023 Apr; 21(2):2350009. PubMed ID: 37104034
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SPRING: a tool for the analysis of genome rearrangement using reversals and block-interchanges.
    Lin YC; Lu CL; Liu YC; Tang CY
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W696-9. PubMed ID: 16845100
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of circular genome rearrangement by fusions, fissions and block-interchanges.
    Lu CL; Huang YL; Wang TC; Chiu HT
    BMC Bioinformatics; 2006 Jun; 7():295. PubMed ID: 16768797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rearrangement Events on Circular Genomes.
    Stevenson J; Terauds V; Sumner J
    Bull Math Biol; 2023 Sep; 85(11):107. PubMed ID: 37749280
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome Rearrangement Distance with Reversals, Transpositions, and Indels.
    Alexandrino AO; Oliveira AR; Dias U; Dias Z
    J Comput Biol; 2021 Mar; 28(3):235-247. PubMed ID: 33085536
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reconstructing contiguous regions of an ancestral genome.
    Ma J; Zhang L; Suh BB; Raney BJ; Burhans RC; Kent WJ; Blanchette M; Haussler D; Miller W
    Genome Res; 2006 Dec; 16(12):1557-65. PubMed ID: 16983148
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GRSR: a tool for deriving genome rearrangement scenarios from multiple unichromosomal genome sequences.
    Wang D; Wang L
    BMC Bioinformatics; 2018 Aug; 19(Suppl 9):291. PubMed ID: 30367596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An algorithm to enumerate sorting reversals for signed permutations.
    Siepel AC
    J Comput Biol; 2003; 10(3-4):575-97. PubMed ID: 12935346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A symmetry-inclusive algebraic approach to genome rearrangement.
    Terauds V; Stevenson J; Sumner J
    J Bioinform Comput Biol; 2021 Dec; 19(6):2140015. PubMed ID: 34806949
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sorting Signed Permutations by Intergenic Reversals.
    Oliveira AR; Jean G; Fertin G; Brito KL; Bulteau L; Dias U; Dias Z
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2870-2876. PubMed ID: 32396097
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Parametric genome rearrangement.
    Blanchette M; Kunisawa T; Sankoff D
    Gene; 1996 Jun; 172(1):GC11-7. PubMed ID: 8654963
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sorting by reversals, block interchanges, tandem duplications, and deletions.
    Bader M
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S9. PubMed ID: 19208182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Breaking Good: Accounting for Fragility of Genomic Regions in Rearrangement Distance Estimation.
    Biller P; Guéguen L; Knibbe C; Tannier E
    Genome Biol Evol; 2016 May; 8(5):1427-39. PubMed ID: 27190002
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TruEst: a better estimator of evolutionary distance under the INFER model.
    Zabelkin A; Avdeyev P; Alexeev N
    J Math Biol; 2023 Jul; 87(2):25. PubMed ID: 37423919
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sorting Permutations by Intergenic Operations.
    Oliveira AR; Jean G; Fertin G; Brito KL; Dias U; Dias Z
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2080-2093. PubMed ID: 33945484
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Path-Deformation Framework for Determining Weighted Genome Rearrangement Distance.
    Bhatia S; Egri-Nagy A; Serdoz S; Praeger CE; Gebhardt V; Francis A
    Front Genet; 2020; 11():1035. PubMed ID: 33193592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sorting Circular Permutations by Super Short Reversals.
    Galvao GR; Baudet C; Dias Z
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(3):620-633. PubMed ID: 26761858
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A mean first passage time genome rearrangement distance.
    Francis AR; Wynn HP
    J Math Biol; 2020 May; 80(6):1971-1992. PubMed ID: 32253463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.