BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37517046)

  • 41. Super short operations on both gene order and intergenic sizes.
    Oliveira AR; Jean G; Fertin G; Dias U; Dias Z
    Algorithms Mol Biol; 2019; 14():21. PubMed ID: 31709002
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multiple genome rearrangement by reversals.
    Wu S; Gu X
    Pac Symp Biocomput; 2002; ():259-70. PubMed ID: 11928481
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reversal and Transposition Distance on Unbalanced Genomes Using Intergenic Information.
    Alexandrino AO; Oliveira AR; Jean G; Fertin G; Dias U; Dias Z
    J Comput Biol; 2023 Aug; 30(8):861-876. PubMed ID: 37222724
    [TBL] [Abstract][Full Text] [Related]  

  • 44. SoRT2: a tool for sorting genomes and reconstructing phylogenetic trees by reversals, generalized transpositions and translocations.
    Huang YL; Huang CC; Tang CY; Lu CL
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W221-7. PubMed ID: 20538651
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Abundance of ultramicro inversions within local alignments between human and chimpanzee genomes.
    Hara Y; Imanishi T
    BMC Evol Biol; 2011 Oct; 11():308. PubMed ID: 22011259
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genome rearrangements with duplications.
    Bader M
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S27. PubMed ID: 20122199
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inversions and the dynamics of eukaryotic gene order.
    Huynen MA; Snel B; Bork P
    Trends Genet; 2001 Jun; 17(6):304-6. PubMed ID: 11377779
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Repeated sequences in bacterial chromosomes and plasmids: a glimpse from sequenced genomes.
    Romero D; Martínez-Salazar J; Ortiz E; Rodríguez C; Valencia-Morales E
    Res Microbiol; 1999; 150(9-10):735-43. PubMed ID: 10673011
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reversal and Indel Distance With Intergenic Region Information.
    Alexandrino AO; Brito KL; Oliveira AR; Dias U; Dias Z
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):1628-1640. PubMed ID: 36260590
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sorting signed permutations by short operations.
    Galvão GR; Lee O; Dias Z
    Algorithms Mol Biol; 2015; 10():12. PubMed ID: 25838839
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An algebraic view of bacterial genome evolution.
    Francis AR
    J Math Biol; 2014 Dec; 69(6-7):1693-718. PubMed ID: 24375264
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polymorphic micro-inversions contribute to the genomic variability of humans and chimpanzees.
    Szamalek JM; Cooper DN; Schempp W; Minich P; Kohn M; Hoegel J; Goidts V; Hameister H; Kehrer-Sawatzki H
    Hum Genet; 2006 Mar; 119(1-2):103-12. PubMed ID: 16362346
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Heuristics for the inversion median problem.
    Rajan V; Xu AW; Lin Y; Swenson KM; Moret BM
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S30. PubMed ID: 20122203
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On the rank-distance median of 3 permutations.
    Chindelevitch L; Pereira Zanetti JP; Meidanis J
    BMC Bioinformatics; 2018 May; 19(Suppl 6):142. PubMed ID: 29745865
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Measuring genome divergence in bacteria: a case study using chlamydian data.
    Dalevi DA; Eriksen N; Eriksson K; Andersson SG
    J Mol Evol; 2002 Jul; 55(1):24-36. PubMed ID: 12165840
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Non-Random Inversion Landscapes in Prokaryotic Genomes Are Shaped by Heterogeneous Selection Pressures.
    Repar J; Warnecke T
    Mol Biol Evol; 2017 Aug; 34(8):1902-1911. PubMed ID: 28407093
    [TBL] [Abstract][Full Text] [Related]  

  • 57. From genome structure to function: insights into structural variation in microbiology.
    West PT; Chanin RB; Bhatt AS
    Curr Opin Microbiol; 2022 Oct; 69():102192. PubMed ID: 36030622
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Programmed chromosome fission and fusion enable precise large-scale genome rearrangement and assembly.
    Wang K; de la Torre D; Robertson WE; Chin JW
    Science; 2019 Aug; 365(6456):922-926. PubMed ID: 31467221
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families.
    Cosner ME; Jansen RK; Palmer JD; Downie SR
    Curr Genet; 1997 May; 31(5):419-29. PubMed ID: 9162114
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Precise excision and self-integration of a composite transposon as a model for spontaneous large-scale chromosome inversion/deletion of the Staphylococcus haemolyticus clinical strain JCSC1435.
    Watanabe S; Ito T; Morimoto Y; Takeuchi F; Hiramatsu K
    J Bacteriol; 2007 Apr; 189(7):2921-5. PubMed ID: 17237177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.