BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37517224)

  • 1. Enzymatic synthesis of branched chain fatty acid-enriched structured triacylglycerols via esterification with glycerol.
    Huang Y; Li H; Wang Z; Fu Y; Chen Y; Wang X
    Food Chem; 2023 Dec; 429():136943. PubMed ID: 37517224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic synthesis of extremely pure triacylglycerols enriched in conjugated linoleic acids.
    Cao Y; Wang W; Xu Y; Yang B; Wang Y
    Molecules; 2013 Aug; 18(8):9704-16. PubMed ID: 23945644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvent-free lipase-catalyzed preparation of diacylglycerols.
    Weber N; Mukherjee KD
    J Agric Food Chem; 2004 Aug; 52(17):5347-53. PubMed ID: 15315368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of stearidonic acid-rich triacylglycerol via a two-step enzymatic esterification.
    Kim NH; Kim H; Choi N; Kim Y; Kim BH; Kim IH
    Food Chem; 2019 Jan; 270():332-337. PubMed ID: 30174055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Process for the Synthesis of Highly Pure n-3 Polyunsaturated Fatty Acid (PUFA)-Enriched Triglycerides by Combined Transesterification and Ethanolysis.
    Li D; Wang W; Qin X; Li X; Yang B; Wang Y
    J Agric Food Chem; 2016 Aug; 64(34):6533-8. PubMed ID: 27540752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilized MAS1 Lipase-catalyzed Synthesis of n-3 PUFA-rich Triacylglycerols in Deep Eutectic Solvents.
    Wang X; Zhao X; Qin X; Zhao Z; Yang B; Wang Y
    J Oleo Sci; 2021 Feb; 70(2):227-236. PubMed ID: 33456003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipase-catalysed production of triacylglycerols enriched in pinolenic acid at the sn-2 position from pine nut oil.
    Choi JH; Kim BH; Hong SI; Kim CT; Kim CJ; Kim Y; Kim IH
    J Sci Food Agric; 2012 Mar; 92(4):870-6. PubMed ID: 21953622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of substrate composition on physicochemical properties of the medium-long-medium structured triacylglycerol.
    Tian Y; Zhou Y; Li L; Huang C; Lin L; Li C; Ye Y
    J Sci Food Agric; 2024 Jan; 104(2):942-955. PubMed ID: 37708388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of conjugated linoleic acid-rich triacylglycerols by immobilized mutant lipase with excellent capability and recyclability.
    Lian W; Li D; Zhang L; Wang W; Faiza M; Tan CP; Yang B; Lan D; Wang Y
    Enzyme Microb Technol; 2018 Oct; 117():56-63. PubMed ID: 30037552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structured Mono- and Diacylglycerols with a High Content of Medium Chain Fatty Acids.
    Esperón-Rojas AA; Baeza-Jiménez R; Cano-Sarmiento C; García HS
    J Oleo Sci; 2017 Sep; 66(9):991-996. PubMed ID: 28794310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Synthesis of Stearidonic Acid Enriched Triacylglycerol from Ahiflower Seed Oil via a Two-Step Enzyme Reaction.
    Ju C; Lee YJ; Yoon HS; Kim BH; Kim IH
    J Oleo Sci; 2022; 71(11):1679-1688. PubMed ID: 36310055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies of reaction variables for lipase-catalyzed production of alpha-linolenic acid enriched structured lipid and oxidative stability with antioxidants.
    Mitra K; Shin JA; Lee JH; Kim SA; Hong ST; Sung CK; Xue CL; Lee KT
    J Food Sci; 2012 Jan; 77(1):C39-45. PubMed ID: 22122200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability comparison of four lipases and catalytic mechanism during the synthesis of 1,3-di-oleic-2-medium chain triacylglycerols in a trace water-in-oil system: Experimental analyses and computational simulations.
    Peng B; Luo T; Chen F; Wang M; Fu JH; Zheng LF; Li J; Deng ZY
    J Food Biochem; 2021 May; 45(5):e13667. PubMed ID: 33837552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Enzymatic synthesis of homogenous triacylglycerol in media without solvent].
    Sayari A; Gargouri Y
    Arch Inst Pasteur Tunis; 2006; 83(1-4):63-9. PubMed ID: 19388599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of Structured Triacylglycerols Containing Palmitic Acids at sn-2 Position and Docosahexaenoic Acids at sn-1, 3 Positions.
    Liu Y; Guo Y; Sun Z; Jie X; Li Z; Wang J; Wang Y; Xue C
    J Oleo Sci; 2015; 64(11):1227-34. PubMed ID: 26521813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of DHA-Rich Medium- and Long-Chain Triacylglycerols by Lipase-Catalyzed Acidolysis of Microbial Oil from Schizochytrium sp.with Medium-Chain Fatty Acids.
    Zou X; Ye L; He X; Wu S; Zhang H; Jin Q
    Appl Biochem Biotechnol; 2020 Jul; 191(3):1294-1314. PubMed ID: 32096059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilized MAS1 lipase showed high esterification activity in the production of triacylglycerols with n-3 polyunsaturated fatty acids.
    Wang X; Li D; Qu M; Durrani R; Yang B; Wang Y
    Food Chem; 2017 Feb; 216():260-7. PubMed ID: 27596418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational search for lipases that can preferentially hydrolyze long-chain omega-3 fatty acids from fish oil triacylglycerols.
    Kamal MZ; Barrow CJ; Rao NM
    Food Chem; 2015 Apr; 173():1030-6. PubMed ID: 25466121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of α-linolenic acid-rich triacylglycerol using a newly prepared immobilized lipase.
    Kim H; Choi N; Oh SW; Kim Y; Hee Kim B; Kim IH
    Food Chem; 2017 Dec; 237():654-658. PubMed ID: 28764049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic preparation of structured oils containing short-chain fatty acids.
    Kanda A; Namiki F; Hara S
    J Oleo Sci; 2010; 59(12):641-5. PubMed ID: 21099141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.