BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 37517694)

  • 21. Targeted repression of
    Chakrabarti M; Garg S; Rajagopal A; Pati S; Singh S
    Dis Model Mech; 2020 Jun; 13(6):. PubMed ID: 32493727
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glycolysis in Plasmodium falciparum results in modulation of host enzyme activities.
    Mehta M; Sonawat HM; Sharma S
    J Vector Borne Dis; 2006 Sep; 43(3):95-103. PubMed ID: 17024857
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human erythrocyte remodelling during Plasmodium falciparum malaria parasite growth and egress.
    Mbengue A; Yam XY; Braun-Breton C
    Br J Haematol; 2012 Apr; 157(2):171-9. PubMed ID: 22313394
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting glycolysis in the malaria parasite Plasmodium falciparum.
    van Niekerk DD; Penkler GP; du Toit F; Snoep JL
    FEBS J; 2016 Feb; 283(4):634-46. PubMed ID: 26648082
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of Antimalarial Compounds That Require CLAG3 for Their Uptake by
    Mira-Martínez S; Pickford AK; Rovira-Graells N; Guetens P; Tintó-Font E; Cortés A; Rosanas-Urgell A
    Antimicrob Agents Chemother; 2019 May; 63(5):. PubMed ID: 30782998
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Malaria parasite-infected erythrocytes inhibit glucose utilization in uninfected red cells.
    Mehta M; Sonawat HM; Sharma S
    FEBS Lett; 2005 Nov; 579(27):6151-8. PubMed ID: 16246333
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic host responses to malarial infection during the intraerythrocytic developmental cycle.
    Wallqvist A; Fang X; Tewari SG; Ye P; Reifman J
    BMC Syst Biol; 2016 Aug; 10(1):58. PubMed ID: 27502771
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum.
    Wilson DW; Goodman CD; Sleebs BE; Weiss GE; de Jong NW; Angrisano F; Langer C; Baum J; Crabb BS; Gilson PR; McFadden GI; Beeson JG
    BMC Biol; 2015 Jul; 13():52. PubMed ID: 26187647
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FRET imaging of hemoglobin concentration in Plasmodium falciparum-infected red cells.
    Esposito A; Tiffert T; Mauritz JM; Schlachter S; Bannister LH; Kaminski CF; Lew VL
    PLoS One; 2008; 3(11):e3780. PubMed ID: 19023444
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New targets for drug discovery against malaria.
    Santos G; Torres NV
    PLoS One; 2013; 8(3):e59968. PubMed ID: 23555851
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport of lactate and pyruvate in the intraerythrocytic malaria parasite, Plasmodium falciparum.
    Elliott JL; Saliba KJ; Kirk K
    Biochem J; 2001 May; 355(Pt 3):733-9. PubMed ID: 11311136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple stiffening effects of nanoscale knobs on human red blood cells infected with Plasmodium falciparum malaria parasite.
    Zhang Y; Huang C; Kim S; Golkaram M; Dixon MW; Tilley L; Li J; Zhang S; Suresh S
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6068-73. PubMed ID: 25918423
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The malaria parasite Plasmodium falciparum in red blood cells selectively takes up serum proteins that affect host pathogenicity.
    Tougan T; Edula JR; Morita M; Takashima E; Honma H; Tsuboi T; Horii T
    Malar J; 2020 Apr; 19(1):155. PubMed ID: 32295584
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling metabolism and stage-specific growth of Plasmodium falciparum HB3 during the intraerythrocytic developmental cycle.
    Fang X; Reifman J; Wallqvist A
    Mol Biosyst; 2014 Oct; 10(10):2526-37. PubMed ID: 25001103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new mass spectral library for high-coverage and reproducible analysis of the Plasmodium falciparum-infected red blood cell proteome.
    Siddiqui G; De Paoli A; MacRaild CA; Sexton AE; Boulet C; Shah AD; Batty MB; Schittenhelm RB; Carvalho TG; Creek DJ
    Gigascience; 2022 Mar; 11():. PubMed ID: 35254426
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hexose-monophosphate shunt activity in intact Plasmodium falciparum-infected erythrocytes and in free parasites.
    Atamna H; Pascarmona G; Ginsburg H
    Mol Biochem Parasitol; 1994 Sep; 67(1):79-89. PubMed ID: 7838186
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Novel Methodology for Bioenergetic Analysis of Plasmodium falciparum Reveals a Glucose-Regulated Metabolic Shift and Enables Mode of Action Analyses of Mitochondrial Inhibitors.
    Sakata-Kato T; Wirth DF
    ACS Infect Dis; 2016 Dec; 2(12):903-916. PubMed ID: 27718558
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of intracellular glutathione levels in erythrocytes infected with chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum.
    Meierjohann S; Walter RD; Müller S
    Biochem J; 2002 Dec; 368(Pt 3):761-8. PubMed ID: 12225291
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Basis for Rapid Clearance of Circulating Ring-Stage Malaria Parasites by the Spiroindolone KAE609.
    Zhang R; Suwanarusk R; Malleret B; Cooke BM; Nosten F; Lau YL; Dao M; Lim CT; Renia L; Tan KS; Russell B
    J Infect Dis; 2016 Jan; 213(1):100-4. PubMed ID: 26136472
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ivermectin Impairs the Development of Sexual and Asexual Stages of Plasmodium falciparum
    de Carvalho LP; Sandri TL; José Tenório de Melo E; Fendel R; Kremsner PG; Mordmüller B; Held J
    Antimicrob Agents Chemother; 2019 Aug; 63(8):. PubMed ID: 31109978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.