BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 37518813)

  • 41. Additive Manufacturing of Dental Ceramics: A Systematic Review and Meta-Analysis.
    Al Hamad KQ; Al-Rashdan BA; Ayyad JQ; Al Omrani LM; Sharoh AM; Al Nimri AM; Al-Kaff FT
    J Prosthodont; 2022 Oct; 31(8):e67-e86. PubMed ID: 35675133
    [TBL] [Abstract][Full Text] [Related]  

  • 42. On the Evolution of Additive Manufacturing (3D/4D Printing) Technologies: Materials, Applications, and Challenges.
    Mahmood A; Akram T; Chen H; Chen S
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365695
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stereolithographic Additive Manufacturing of High Precision Glass Ceramic Parts.
    Schönherr JA; Baumgartner S; Hartmann M; Stampfl J
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32218270
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Additive Manufacturing of Smart Composite Structures Based on Flexinol Wires.
    Dudek O; Klein W; Gąsiorek D; Pawlak M
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057215
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cold-programmed shape-morphing structures based on grayscale digital light processing 4D printing.
    Yue L; Sun X; Yu L; Li M; Montgomery SM; Song Y; Nomura T; Tanaka M; Qi HJ
    Nat Commun; 2023 Sep; 14(1):5519. PubMed ID: 37684245
    [TBL] [Abstract][Full Text] [Related]  

  • 46. 4D Printing of Body Temperature-Responsive Hydrogels Based on Poly(acrylic acid) with Shape-Memory and Self-Healing Abilities.
    Abdullah T; Okay O
    ACS Appl Bio Mater; 2023 Feb; 6(2):703-711. PubMed ID: 36700540
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of ceramic additive manufacturing: process and materials technology.
    Jang S; Park S; Bae CJ
    Biomed Eng Lett; 2020 Nov; 10(4):493-503. PubMed ID: 33194243
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Programmable 4D Printing of Photoactive Shape Memory Composite Structures.
    Deng Y; Zhang F; Jiang M; Liu Y; Yuan H; Leng J
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42568-42577. PubMed ID: 36097702
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Artificial Intelligence-Empowered 3D and 4D Printing Technologies toward Smarter Biomedical Materials and Approaches.
    Pugliese R; Regondi S
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890571
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ceramic-Based 4D Components: Additive Manufacturing (AM) of Ceramic-Based Functionally Graded Materials (FGM) by Thermoplastic 3D Printing (T3DP).
    Scheithauer U; Weingarten S; Johne R; Schwarzer E; Abel J; Richter HJ; Moritz T; Michaelis A
    Materials (Basel); 2017 Nov; 10(12):. PubMed ID: 29182541
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Additive manufacturing of ceramics for dental applications: A review.
    Galante R; Figueiredo-Pina CG; Serro AP
    Dent Mater; 2019 Jun; 35(6):825-846. PubMed ID: 30948230
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Color-Changeable Four-Dimensional Printing Enabled with Ultraviolet-Curable and Thermochromic Shape Memory Polymers.
    Chen L; Zhang Y; Ye H; Duan G; Duan H; Ge Q; Wang Z
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):18120-18127. PubMed ID: 33830721
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dynamic Imine Bond-Based Shape Memory Polymers with Permanent Shape Reconfigurability for 4D Printing.
    Miao JT; Ge M; Peng S; Zhong J; Li Y; Weng Z; Wu L; Zheng L
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40642-40651. PubMed ID: 31577114
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 3D Printing of Bioinert Oxide Ceramics for Medical Applications.
    Buj-Corral I; Tejo-Otero A
    J Funct Biomater; 2022 Sep; 13(3):. PubMed ID: 36135590
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 4D Printing of High-Performance Thermal-Responsive Liquid Metal Elastomers Driven by Embedded Microliquid Chambers.
    Zhou LY; Ye JH; Fu JZ; Gao Q; He Y
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):12068-12074. PubMed ID: 32066245
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multiscale Heterogeneous Polymer Composites for High Stiffness 4D Printed Electrically Controllable Multifunctional Structures.
    Morales Ferrer JM; Sánchez Cruz RE; Caplan S; van Rees WM; Boley JW
    Adv Mater; 2024 Feb; 36(8):e2307858. PubMed ID: 38063841
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stereolithography: A new method for processing dental ceramics by additive computer-aided manufacturing.
    Dehurtevent M; Robberecht L; Hornez JC; Thuault A; Deveaux E; Béhin P
    Dent Mater; 2017 May; 33(5):477-485. PubMed ID: 28318544
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Extrusion-Based 3D Printing of Ceramic Pastes: Mathematical Modeling and In Situ Shaping Retention Approach.
    Hu F; Mikolajczyk T; Pimenov DY; Gupta MK
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33670904
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stereolithography-based additive manufacturing of lithium disilicate glass ceramic for dental applications.
    Baumgartner S; Gmeiner R; Schönherr JA; Stampfl J
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111180. PubMed ID: 32806296
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Self-Healing Four-Dimensional Printing with an Ultraviolet Curable Double-Network Shape Memory Polymer System.
    Zhang B; Zhang W; Zhang Z; Zhang YF; Hingorani H; Liu Z; Liu J; Ge Q
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10328-10336. PubMed ID: 30785262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.