BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37519099)

  • 1. Optimisation of GraPhage13 macro-dispersibility
    Stokes K; Sun Y; Passaretti P; White H; Goldberg Oppenheimer P
    Nanoscale; 2023 Aug; 15(32):13304-13312. PubMed ID: 37519099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional graphene oxide-bacteriophage based porous three-dimensional micro-nanocomposites.
    Passaretti P; Sun Y; Khan I; Chan K; Sabo R; White H; Dafforn TR; Oppenheimer PG
    Nanoscale; 2019 Jul; 11(28):13318-13329. PubMed ID: 31271408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dye Aggregate-Mediated Self-Assembly of Bacteriophage Bioconjugates.
    Tridgett M; Lozano L; Passaretti P; Desai NR; Proctor TJ; Little HA; Logan RT; Arkill KP; Oppenheimer PG; Dafforn TR
    Bioconjug Chem; 2018 Nov; 29(11):3705-3714. PubMed ID: 30347978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fate of aggregated graphene oxide upon the increasing of pH: An experimental and molecular dynamic study.
    Li W; Yu J; Zhang S; Tang H; Huang T
    Sci Total Environ; 2022 Dec; 851(Pt 1):157954. PubMed ID: 35963410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomesh-structured ultrathin membranes harnessing the unidirectional alignment of viruses on a graphene-oxide film.
    Lee YM; Jung B; Kim YH; Park AR; Han S; Choe WS; Yoo PJ
    Adv Mater; 2014 Jun; 26(23):3899-904. PubMed ID: 24652694
    [No Abstract]   [Full Text] [Related]  

  • 6. Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide through pKa Measurements.
    Konkena B; Vasudevan S
    J Phys Chem Lett; 2012 Apr; 3(7):867-72. PubMed ID: 26286412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modified Filamentous Bacteriophage as a Scaffold for Carbon Nanofiber.
    Szot-Karpińska K; Golec P; Leśniewski A; Pałys B; Marken F; Niedziółka-Jönsson J; Węgrzyn G; Łoś M
    Bioconjug Chem; 2016 Dec; 27(12):2900-2910. PubMed ID: 27748604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free chemiresistor biosensor based on reduced graphene oxide and M13 bacteriophage for detection of coliforms.
    Nakama K; Sedki M; Mulchandani A
    Anal Chim Acta; 2021 Mar; 1150():338232. PubMed ID: 33583547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembled Nanoporous Biofilms from Functionalized Nanofibrous M13 Bacteriophage.
    Devaraj V; Han J; Kim C; Kang YC; Oh JW
    Viruses; 2018 Jun; 10(6):. PubMed ID: 29895757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomechanics of graphene oxide-bacteriophage based self-assembled porous composites.
    Sun Y; Passaretti P; Hernandez I; Gonzalez J; Liu W; Rodriguez F; Dunstan DJ; Goldberg Oppenheimer P; Humphreys CJ
    Sci Rep; 2020 Sep; 10(1):15618. PubMed ID: 32973218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the endocytic pathways of the filamentous bacteriophage in live cells using ratiometric pH fluorescent indicator.
    Tian Y; Wu M; Liu X; Liu Z; Zhou Q; Niu Z; Huang Y
    Adv Healthc Mater; 2015 Feb; 4(3):413-9. PubMed ID: 25308797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of the Aggregation of Graphene Oxide at High pH: Roles of Oxidation Debris and Metal Adsorption.
    Tang H; Zhang S; Huang T; Zhang J; Xing B
    Environ Sci Technol; 2021 Nov; 55(21):14639-14648. PubMed ID: 34648271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregation kinetics of graphene oxides in aqueous solutions: experiments, mechanisms, and modeling.
    Wu L; Liu L; Gao B; Muñoz-Carpena R; Zhang M; Chen H; Zhou Z; Wang H
    Langmuir; 2013 Dec; 29(49):15174-81. PubMed ID: 24261814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH sensing characteristics and biosensing application of solution-gated reduced graphene oxide field-effect transistors.
    Sohn IY; Kim DJ; Jung JH; Yoon OJ; Thanh TN; Quang TT; Lee NE
    Biosens Bioelectron; 2013 Jul; 45():70-6. PubMed ID: 23454740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregation Kinetics and Self-Assembly Mechanisms of Graphene Quantum Dots in Aqueous Solutions: Cooperative Effects of pH and Electrolytes.
    Li Q; Chen B; Xing B
    Environ Sci Technol; 2017 Feb; 51(3):1364-1376. PubMed ID: 28068468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the Role of M13 Bacteriophage Thin Films on a Metallic Nanostructure through a Standard and Dynamic Model.
    Nguyen TM; Choi CW; Lee JE; Heo D; Lee YW; Gu SH; Choi EJ; Lee JM; Devaraj V; Oh JW
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of a Metal Oxide Interlayer using a Virus-Templated Assembly for Synthesis of Graphene-Electrode-Based Organic Photovoltaics.
    Lee YM; Kim W; Kim YH; Kim JK; Jang JR; Choe WS; Park JH; Yoo PJ
    ChemSusChem; 2015 Jul; 8(14):2385-91. PubMed ID: 25809350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of graphene thin films based on layer-by-layer self-assembly of functionalized graphene nanosheets.
    Park JS; Cho SM; Kim WJ; Park J; Yoo PJ
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):360-8. PubMed ID: 21207942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dispersibility-Dependent Biodegradation of Graphene Oxide by Myeloperoxidase.
    Kurapati R; Russier J; Squillaci MA; Treossi E; Ménard-Moyon C; Del Rio-Castillo AE; Vazquez E; Samorì P; Palermo V; Bianco A
    Small; 2015 Aug; 11(32):3985-94. PubMed ID: 25959808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene sheets stabilized on genetically engineered M13 viral templates as conducting frameworks for hybrid energy-storage materials.
    Oh D; Dang X; Yi H; Allen MA; Xu K; Lee YJ; Belcher AM
    Small; 2012 Apr; 8(7):1006-11. PubMed ID: 22337601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.