BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37519099)

  • 21. Designing M13 Bacteriophage and Fe-Nanonest Self-Assembly System for Universal and Facile Preparation of Metal Single Atoms as Stable Mimicking Enzymes.
    Qi W; Song M; Wang M; Yu H
    ACS Nano; 2023 Dec; 17(24):25483-25495. PubMed ID: 38079359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-assembly of collagen fibrils on graphene oxide and their hybrid nanocomposite films.
    Yue C; Ding C; Du X; Wang Y; Su J; Cheng B
    Int J Biol Macromol; 2021 Dec; 193(Pt A):173-182. PubMed ID: 34687767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface tailoring of polyacrylate-grafted graphene oxide for controlled interactions at the biointerface.
    Consiglio G; Di Pietro P; D'Urso L; Forte G; Grasso G; Sgarlata C; Cossement D; Snyders R; Satriano C
    J Colloid Interface Sci; 2017 Nov; 506():532-542. PubMed ID: 28756320
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination and characterisation of the surface charge properties of the bacteriophage M13 to assist bio-nanoengineering.
    Passaretti P; Sun Y; Dafforn TR; Oppenheimer PG
    RSC Adv; 2020 Jun; 10(42):25385-25392. PubMed ID: 35517472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aggregation and Stability of Reduced Graphene Oxide: Complex Roles of Divalent Cations, pH, and Natural Organic Matter.
    Chowdhury I; Mansukhani ND; Guiney LM; Hersam MC; Bouchard D
    Environ Sci Technol; 2015 Sep; 49(18):10886-93. PubMed ID: 26280799
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Preparation and application of graphene oxide functionalized melamine-formaldehyde aerogel coated solid-phase microextraction tube].
    Sun M; Li C; Sun M; Feng Y; Feng J; Sun H; Feng J
    Se Pu; 2022 Oct; 40(10):889-899. PubMed ID: 36222252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomimetic self-templating optical structures fabricated by genetically engineered M13 bacteriophage.
    Kim WG; Song H; Kim C; Moon JS; Kim K; Lee SW; Oh JW
    Biosens Bioelectron; 2016 Nov; 85():853-859. PubMed ID: 27295572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and Functionalization of 3D Nano-graphene Materials: Graphene Aerogels and Graphene Macro Assemblies.
    Campbell PG; Worsley MA; Hiszpanski AM; Baumann TF; Biener J
    J Vis Exp; 2015 Nov; (105):e53235. PubMed ID: 26574930
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorption and self-assembly of M13 phage into directionally organized structures on C and SiO2 films.
    Moghimian P; Srot V; Rothenstein D; Facey SJ; Harnau L; Hauer B; Bill J; van Aken PA
    Langmuir; 2014 Sep; 30(38):11428-32. PubMed ID: 25195499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation.
    Schneider GF; Xu Q; Hage S; Luik S; Spoor JN; Malladi S; Zandbergen H; Dekker C
    Nat Commun; 2013; 4():2619. PubMed ID: 24126320
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-assembled three-dimensional double network graphene oxide/polyacrylic acid hybrid aerogel for removal of Cu
    Han Q; Chen L; Li W; Zhou Z; Fang Z; Xu Z; Qian X
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):34438-34447. PubMed ID: 30306446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering of M13 Bacteriophage for Development of Tissue Engineering Materials.
    Jin HE; Lee SW
    Methods Mol Biol; 2018; 1776():487-502. PubMed ID: 29869262
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemical modification of M13 bacteriophage and its application in cancer cell imaging.
    Li K; Chen Y; Li S; Nguyen HG; Niu Z; You S; Mello CM; Lu X; Wang Q
    Bioconjug Chem; 2010 Jul; 21(7):1369-77. PubMed ID: 20499838
    [TBL] [Abstract][Full Text] [Related]  

  • 34. M13 bacteriophage displaying DOPA on surfaces: fabrication of various nanostructured inorganic materials without time-consuming screening processes.
    Park JP; Do M; Jin HE; Lee SW; Lee H
    ACS Appl Mater Interfaces; 2014; 6(21):18653-60. PubMed ID: 25317741
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of an electrochemical platform based on the self-assembly of graphene oxide-multiwall carbon nanotube nanocomposite and horseradish peroxidase: direct electrochemistry and electrocatalysis.
    Zhang Q; Yang S; Zhang J; Zhang L; Kang P; Li J; Xu J; Zhou H; Song XM
    Nanotechnology; 2011 Dec; 22(49):494010. PubMed ID: 22101607
    [TBL] [Abstract][Full Text] [Related]  

  • 36. pH-sensitive and magnetically separable Fe/Cu bimetallic nanoparticles supported by graphene oxide (GO) for high-efficiency removal of tetracyclines.
    Tabrizian P; Ma W; Bakr A; Rahaman MS
    J Colloid Interface Sci; 2019 Jan; 534():549-562. PubMed ID: 30253356
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electronic-property dependent interactions between tetracycline and graphene nanomaterials in aqueous solution.
    He L; Liu FF; Zhao M; Qi Z; Sun X; Afzal MZ; Sun X; Li Y; Hao J; Wang S
    J Environ Sci (China); 2018 Apr; 66():286-294. PubMed ID: 29628096
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation of Three-Dimensional Chitosan-Graphene Oxide Aerogel for Residue Oil Removal.
    Guo X; Qu L; Zhu S; Tian M; Zhang X; Sun K; Tang X
    Water Environ Res; 2016 Aug; 88(8):768-78. PubMed ID: 27456137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellulose Nanofiber-Graphene Oxide Biohybrids: Disclosing the Self-Assembly and Copper-Ion Adsorption Using Advanced Microscopy and ReaxFF Simulations.
    Zhu C; Monti S; Mathew AP
    ACS Nano; 2018 Jul; 12(7):7028-7038. PubMed ID: 29889498
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetically tunable M13 phage films utilizing evaporating droplets.
    Alberts E; Warner C; Barnes E; Pilkiewicz K; Perkins E; Poda A
    Colloids Surf B Biointerfaces; 2018 Jan; 161():210-218. PubMed ID: 29080505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.