BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 37519231)

  • 21. Inward Ca
    Kleene SJ; Kleene NK
    Am J Physiol Renal Physiol; 2021 Jun; 320(6):F1165-F1173. PubMed ID: 33969696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Early embryonic renal tubules of wild-type and polycystic kidney disease kidneys respond to cAMP stimulation with cystic fibrosis transmembrane conductance regulator/Na(+),K(+),2Cl(-) Co-transporter-dependent cystic dilation.
    Magenheimer BS; St John PL; Isom KS; Abrahamson DR; De Lisle RC; Wallace DP; Maser RL; Grantham JJ; Calvet JP
    J Am Soc Nephrol; 2006 Dec; 17(12):3424-37. PubMed ID: 17108316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of ciliary trafficking of polycystin-2 and the pathogenesis of autosomal dominant polycystic kidney disease.
    Cai Y; Tang Z
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2010 Feb; 35(2):93-9. PubMed ID: 20197605
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cystic fibrosis transmembrane conductance regulator in the kidney: clues to its role?
    Wilson PD
    Exp Nephrol; 1999; 7(4):284-9. PubMed ID: 10450015
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of CFTR Expression and Arginine Vasopressin Activity Are Dependent on Polycystin-1 in Kidney-Derived Cells.
    de Lemos Barbosa CM; Souza-Menezes J; Amaral AG; Onuchic LF; Cebotaru L; Guggino WB; Morales MM
    Cell Physiol Biochem; 2016; 38(1):28-39. PubMed ID: 26741910
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A role for CFTR in human autosomal dominant polycystic kidney disease.
    Hanaoka K; Devuyst O; Schwiebert EM; Wilson PD; Guggino WB
    Am J Physiol; 1996 Jan; 270(1 Pt 1):C389-99. PubMed ID: 8772467
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The native TRPP2-dependent channel of murine renal primary cilia.
    Kleene SJ; Kleene NK
    Am J Physiol Renal Physiol; 2017 Jan; 312(1):F96-F108. PubMed ID: 27760766
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cyst growth, polycystins, and primary cilia in autosomal dominant polycystic kidney disease.
    Lee SH; Somlo S
    Kidney Res Clin Pract; 2014 Jun; 33(2):73-8. PubMed ID: 26877954
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polycystin-2 cation channel function is under the control of microtubular structures in primary cilia of renal epithelial cells.
    Li Q; Montalbetti N; Wu Y; Ramos A; Raychowdhury MK; Chen XZ; Cantiello HF
    J Biol Chem; 2006 Dec; 281(49):37566-75. PubMed ID: 16950792
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of histone deacetylase 6 activity reduces cyst growth in polycystic kidney disease.
    Cebotaru L; Liu Q; Yanda MK; Boinot C; Outeda P; Huso DL; Watnick T; Guggino WB; Cebotaru V
    Kidney Int; 2016 Jul; 90(1):90-9. PubMed ID: 27165822
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cystic fibrosis and the phenotypic expression of autosomal dominant polycystic kidney disease.
    O'Sullivan DA; Torres VE; Gabow PA; Thibodeau SN; King BF; Bergstralh EJ
    Am J Kidney Dis; 1998 Dec; 32(6):976-83. PubMed ID: 9856513
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway.
    Hartman TR; Liu D; Zilfou JT; Robb V; Morrison T; Watnick T; Henske EP
    Hum Mol Genet; 2009 Jan; 18(1):151-63. PubMed ID: 18845692
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cyst formation following disruption of intracellular calcium signaling.
    Kuo IY; DesRochers TM; Kimmerling EP; Nguyen L; Ehrlich BE; Kaplan DL
    Proc Natl Acad Sci U S A; 2014 Sep; 111(39):14283-8. PubMed ID: 25228769
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of CFTR in autosomal recessive polycystic kidney disease.
    Nakanishi K; Sweeney WE; Macrae Dell K; Cotton CU; Avner ED
    J Am Soc Nephrol; 2001 Apr; 12(4):719-725. PubMed ID: 11274233
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ciliary Mechanisms of Cyst Formation in Polycystic Kidney Disease.
    Ma M; Gallagher AR; Somlo S
    Cold Spring Harb Perspect Biol; 2017 Nov; 9(11):. PubMed ID: 28320755
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and function of polycystins: insights into polycystic kidney disease.
    Douguet D; Patel A; Honoré E
    Nat Rev Nephrol; 2019 Jul; 15(7):412-422. PubMed ID: 30948841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cystic fibrosis transmembrane conductance regulator (CFTR) and renal function.
    Stanton BA
    Wien Klin Wochenschr; 1997 Jun; 109(12-13):457-64. PubMed ID: 9261986
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia.
    Yoder BK; Hou X; Guay-Woodford LM
    J Am Soc Nephrol; 2002 Oct; 13(10):2508-16. PubMed ID: 12239239
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular basis of autosomal dominant polycystic kidney disease.
    Al-Bhalal L; Akhtar M
    Adv Anat Pathol; 2005 May; 12(3):126-33. PubMed ID: 15900113
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A tale of two tails: ciliary mechanotransduction in ADPKD.
    Cantiello HF
    Trends Mol Med; 2003 Jun; 9(6):234-6. PubMed ID: 12829010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.