These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37519415)

  • 1. A Decarbonization Approach for FeCr Production.
    Güney H; Güner Ö; Boncuk FF; Kan S; Benzeşik K; Yücel O
    J Sustain Metall; 2023; 9(1):216-229. PubMed ID: 37519415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manganese and Aluminium Recovery from Ferromanganese Slag and Al White Dross by a High Temperature Smelting-Reduction Process.
    Kudyba A; Safarian J
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of the Direct Reduction of Chromite Process as a Clean Ferrochrome Technology.
    Paktunc D; Coumans JP; Carter D; Zagrtdenov N; Duguay D
    ACS Eng Au; 2024 Feb; 4(1):125-138. PubMed ID: 38405365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cr(VI) formation in ferrochrome-smelter dusts.
    Berryman EJ; Paktunc D
    J Hazard Mater; 2022 Jan; 422():126873. PubMed ID: 34418832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactivity of Low-Grade Chromite Concentrates towards Chlorinating Atmospheres.
    Kanari N; Allain E; Filippov L; Shallari S; Diot F; Patisson F
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33050262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valorization of Aluminum Dross with Copper via High Temperature Melting to Produce Al-Cu Alloys.
    Kudyba A; Akhtar S; Johansen I; Safarian J
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hexavalent chromium removal by ferrochromium slag.
    Erdem M; Altundoğan HS; Turan MD; Tümen F
    J Hazard Mater; 2005 Nov; 126(1-3):176-82. PubMed ID: 16098660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient immobilization and utilization of chromite ore processing residue via hydrothermally constructing spinel phase Fe
    Lan Y; Zhang L; Li X; Liu W; Su X; Lin Z
    Sci Total Environ; 2022 Mar; 813():152637. PubMed ID: 34963612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New EAF Slag Characterization Methodology for Strategic Metal Recovery.
    Menad NE; Kana N; Seron A; Kanari N
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33808868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ferrochrome slag: A critical review of its properties, environmental issues and sustainable utilization.
    Das SK; Tripathi AK; Kandi SK; Mustakim SM; Bhoi B; Rajput P
    J Environ Manage; 2023 Jan; 326(Pt A):116674. PubMed ID: 36410302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental impact of ferrochrome slag in road construction.
    Lind BB; Fällman AM; Larsson LB
    Waste Manag; 2001; 21(3):255-64. PubMed ID: 11280517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnesium recovery from ferrochrome slag: kinetics and possible use in a circular economy.
    Moyo LB; Simate GS; Mamvura TA
    Heliyon; 2022 Dec; 8(12):e12176. PubMed ID: 36578389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasma assisted synthesis of γ-alumina from waste aluminium dross.
    Saravanakumar R; Ramachandran K; Laly LG; Ananthapadmanabhan PV; Yugeswaran S
    Waste Manag; 2018 Jul; 77():565-575. PubMed ID: 29778404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technological research of process for producing titanium rich slag and complex titanium-containing ferroalloy.
    Vorobkalo N; Baisanov A; Makhambetov Y; Mynzhasar Y; Nurgali N
    Heliyon; 2023 Aug; 9(8):e18989. PubMed ID: 37600357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel process to recycle coal gasification fine slag by preparing Si-Fe-Al-Ca alloy.
    Wang Y; Zhang Z; Li L; Guo X; Wei D; Kong J; Du H; Wang H; Zhuang Y; Xing P
    J Environ Manage; 2023 Jul; 337():117681. PubMed ID: 36931070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slag design and iron capture mechanism for recovering low-grade Pt, Pd, and Rh from leaching residue of spent auto-exhaust catalysts.
    Zheng H; Ding Y; Wen Q; Zhao S; He X; Zhang S; Dong C
    Sci Total Environ; 2022 Jan; 802():149830. PubMed ID: 34464795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Utilization of Alkali-Activated Lead-Zinc Smelting Slag for Chromite Ore Processing Residue Solidification/Stabilization.
    Yu L; Fang L; Zhang P; Zhao S; Jiao B; Li D
    Int J Environ Res Public Health; 2021 Sep; 18(19):. PubMed ID: 34639258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaccessibility, bioavailability and toxicity of commercially relevant iron- and chromium-based particles: in vitro studies with an inhalation perspective.
    Hedberg Y; Gustafsson J; Karlsson HL; Möller L; Odnevall Wallinder I
    Part Fibre Toxicol; 2010 Sep; 7():23. PubMed ID: 20815895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aluminothermic Reduction of Manganese Oxide from Selected MnO-Containing Slags.
    Kudyba A; Akhtar S; Johansen I; Safarian J
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33450929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel reductive alkali roasting of chromite ores for carcinogen-free Cr
    Escudero-Castejón L; Taylor J; Sánchez-Segado S; Jha A
    J Hazard Mater; 2021 Feb; 403():123589. PubMed ID: 32795821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.