These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 37519867)

  • 1. Recent trends and challenges of surface electromyography in prosthetic applications.
    Yadav D; Veer K
    Biomed Eng Lett; 2023 Aug; 13(3):353-373. PubMed ID: 37519867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements.
    Krasoulis A; Kyranou I; Erden MS; Nazarpour K; Vijayakumar S
    J Neuroeng Rehabil; 2017 Jul; 14(1):71. PubMed ID: 28697795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two ways to improve myoelectric control for a transhumeral amputee after targeted muscle reinnervation: a case study.
    Xu Y; Zhang D; Wang Y; Feng J; Xu W
    J Neuroeng Rehabil; 2018 May; 15(1):37. PubMed ID: 29747672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees.
    Li X; Samuel OW; Zhang X; Wang H; Fang P; Li G
    J Neuroeng Rehabil; 2017 Jan; 14(1):2. PubMed ID: 28061779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental evaluation of the impact of sEMG interfaces in enhancing embodiment of virtual myoelectric prostheses.
    Castañeda TS; Connan M; Capsi-Morales P; Beckerle P; Castellini C; Piazza C
    J Neuroeng Rehabil; 2024 Apr; 21(1):57. PubMed ID: 38627772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gesture Recognition Using Surface Electromyography and Deep Learning for Prostheses Hand: State-of-the-Art, Challenges, and Future.
    Li W; Shi P; Yu H
    Front Neurosci; 2021; 15():621885. PubMed ID: 33981195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Systematic Study on Electromyography-Based Hand Gesture Recognition for Assistive Robots Using Deep Learning and Machine Learning Models.
    Gopal P; Gesta A; Mohebbi A
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myoelectric control of robotic lower limb prostheses: a review of electromyography interfaces, control paradigms, challenges and future directions.
    Fleming A; Stafford N; Huang S; Hu X; Ferris DP; Huang HH
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34229307
    [No Abstract]   [Full Text] [Related]  

  • 10. Human lower limb activity recognition techniques, databases, challenges and its applications using sEMG signal: an overview.
    Vijayvargiya A; Singh B; Kumar R; Tavares JMRS
    Biomed Eng Lett; 2022 Nov; 12(4):343-358. PubMed ID: 36238368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating computer vision to prosthetic hand control with sEMG: Preliminary results in grasp classification.
    Wang S; Zheng J; Huang Z; Zhang X; Prado da Fonseca V; Zheng B; Jiang X
    Front Robot AI; 2022; 9():948238. PubMed ID: 36212614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards Integration of Domain Knowledge-Guided Feature Engineering and Deep Feature Learning in Surface Electromyography-Based Hand Movement Recognition.
    Wei W; Hu X; Liu H; Zhou M; Song Y
    Comput Intell Neurosci; 2021; 2021():4454648. PubMed ID: 35003244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transradial Amputee Gesture Classification Using an Optimal Number of sEMG Sensors: An Approach Using ICA Clustering.
    Naik GR; Al-Timemy AH; Nguyen HT
    IEEE Trans Neural Syst Rehabil Eng; 2016 Aug; 24(8):837-46. PubMed ID: 26394431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface electromyography in animal biomechanics: A systematic review.
    Valentin S; Zsoldos RR
    J Electromyogr Kinesiol; 2016 Jun; 28():167-83. PubMed ID: 26763600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in myoelectric and body-powered upper-limb prostheses: Systematic literature review.
    Carey SL; Lura DJ; Highsmith MJ; ;
    J Rehabil Res Dev; 2015; 52(3):247-62. PubMed ID: 26230500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of clinical parameters on the control of myoelectric robotic prosthetic hands.
    Atzori M; Gijsberts A; Castellini C; Caputo B; Hager AG; Elsig S; Giatsidis G; Bassetto F; Müller H
    J Rehabil Res Dev; 2016; 53(3):345-58. PubMed ID: 27272750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonography and electromyography based hand motion intention recognition for a trans-radial amputee: A case study.
    Wang Z; Fang Y; Zhou D; Li K; Cointet C; Liu H
    Med Eng Phys; 2020 Jan; 75():45-48. PubMed ID: 31866120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison between sEMG and force as control interfaces to support planar arm movements in adults with Duchenne: a feasibility study.
    Lobo-Prat J; Nizamis K; Janssen MMHP; Keemink AQL; Veltink PH; Koopman BFJM; Stienen AHA
    J Neuroeng Rehabil; 2017 Jul; 14(1):73. PubMed ID: 28701169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of User-Prosthesis-Interfaces for sEMG-Based Multifunctional Prosthetic Hands.
    Fajardo J; Maldonado G; Cardona D; Ferman V; Rohmer E
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770393
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.