These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 375199)

  • 1. Chemical modification study of aminoacyl-tRNA conformation.
    Negishi K; Nishimura S; Harada F; Hayatsu H
    Nucleic Acids Res; 1979 Mar; 6(3):899-914. PubMed ID: 375199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rapid cytosine-specific modification of E. coli tRNA Leu 1 by semicarbazide-bisulfite, a probe for polynucleotide conformations.
    Negishi K; Harada F; Nishimura S; Hayatsu H
    Nucleic Acids Res; 1977 Jul; 4(7):2283-92. PubMed ID: 409997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of bisulfite-induced C to U transitions on aminoacylation of Escherichia coli glycine tRNA.
    Sabban EL; Bhanot OS
    J Biol Chem; 1982 May; 257(9):4796-805. PubMed ID: 7040386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of tRNAPhe and tRNAVal with aminoacyl-tRNA synthetases. A chemical modification study.
    Vlassov VV; Kern D; Romby P; Giegé R; Ebel JP
    Eur J Biochem; 1983 May; 132(3):537-44. PubMed ID: 6343077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification-deficient transfer ribonucleic acids from relaxed control Escherichia coli: structures of the major undermodified phenylalanine and leucine transfer RNAs produced during leucine starvation.
    Kitchingman GR; Fournier MJ
    Biochemistry; 1977 May; 16(10):2213-20. PubMed ID: 324516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical modification as a probe of conformational changes in transfer ribonucleic acid on aminoacylation.
    Lowdon M; Goddard JP
    Biochem J; 1978 Jun; 171(3):601-6. PubMed ID: 248282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Alkylation of tRNAPhe with 4-(N-2-chloroethyl-N-methylamino) benzyl-5'-phosphamide of d(ATTTTCA)].
    Gimautdinova OI; Gorn VV; Gorshkova II; Graĭfer DM; Karpova GG
    Bioorg Khim; 1986 Apr; 12(4):490-8. PubMed ID: 2424457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-range conformational transition in yeast tRNAPhe, induced by the Y-base removal and detected by chloroacetaldehyde modification.
    Krzyzosiak WJ; Ciesiołka J
    Nucleic Acids Res; 1983 Oct; 11(19):6913-21. PubMed ID: 6356038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbodiimide modification analysis of aminoacylated yeast phenylalanine tRNA: evidence for change in the apex region.
    Fritzinger DC; Fournier MJ
    Nucleic Acids Res; 1982 Apr; 10(7):2419-37. PubMed ID: 7045810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minor conformational changes of yeast tRNAPhe anticodon loop occur upon aminoacylation as indicated by Y base fluorescence.
    Okabe N; Cramer F
    J Biochem; 1981 May; 89(5):1439-43. PubMed ID: 7024259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase.
    Schulman LH; Pelka H
    Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anticodon sequence mutants of Escherichia coli initiator tRNA: effects of overproduction of aminoacyl-tRNA synthetases, methionyl-tRNA formyltransferase, and initiation factor 2 on activity in initiation.
    Mayer C; Köhrer C; Kenny E; Prusko C; RajBhandary UL
    Biochemistry; 2003 May; 42(17):4787-99. PubMed ID: 12718519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Location of accessible bases in Escherichia coli formylmethionine transfer RNA as determined by chemical modification.
    Schulman LH; Pelka H
    Biochemistry; 1976 Dec; 15(26):5769-75. PubMed ID: 827308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bisulfite-induced C changed to U transitions in yeast valine tRNA.
    Bhanot OS; Aoyagi S; Chambers RW
    J Biol Chem; 1977 Apr; 252(8):2566-74. PubMed ID: 404293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Escherichia coli tRNAPhe in the free state, in the ternary complex and in the ribosomal A and P sites by chemical probing.
    Douthwaite S; Garrett RA; Wagner R
    Eur J Biochem; 1983 Mar; 131(2):261-9. PubMed ID: 6187569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Base substitutions in the wobble position of the anticodon inhibit aminoacylation of E. coli tRNAfMet by E. coli Met-tRNA synthetase.
    Schulman LH; Pelka H; Susani M
    Nucleic Acids Res; 1983 Mar; 11(5):1439-55. PubMed ID: 6338482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yeast mitochondrial methionine initiator tRNA: characterization and nucleotide sequence.
    Canaday J; Dirheimer G; Martin RP
    Nucleic Acids Res; 1980 Apr; 8(7):1445-57. PubMed ID: 6448989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of sodium bisulfite modification on the arginine acceptance of E. coli tRNA Arg.
    Chakraburtty K
    Nucleic Acids Res; 1975 Oct; 2(10):1793-804. PubMed ID: 1103086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli formylmethionine tRNA: mutations in GGGCCC sequence conserved in anticodon stem of initiator tRNAs affect initiation of protein synthesis and conformation of anticodon loop.
    Seong BL; RajBhandary UL
    Proc Natl Acad Sci U S A; 1987 Jan; 84(2):334-8. PubMed ID: 3540960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aminoacylation of tRNA in the evolution of an aminoacyl-tRNA synthetase.
    Lipman RS; Hou YM
    Proc Natl Acad Sci U S A; 1998 Nov; 95(23):13495-500. PubMed ID: 9811828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.