These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37520296)

  • 1. Autonomous motion and control of lower limb exoskeleton rehabilitation robot.
    Gao X; Zhang P; Peng X; Zhao J; Liu K; Miao M; Zhao P; Luo D; Li Y
    Front Bioeng Biotechnol; 2023; 11():1223831. PubMed ID: 37520296
    [No Abstract]   [Full Text] [Related]  

  • 2. Design and control of a lower limb rehabilitation robot considering undesirable torques of the patient's limb.
    Almaghout K; Tarvirdizadeh B; Alipour K; Hadi A
    Proc Inst Mech Eng H; 2020 Dec; 234(12):1457-1471. PubMed ID: 32777995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-mode adaptive control strategy for a lower limb rehabilitation robot.
    Liang X; Yan Y; Dai S; Guo Z; Li Z; Liu S; Su T
    Front Bioeng Biotechnol; 2024; 12():1392599. PubMed ID: 38817926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment.
    Wang Y; Liu Z; Feng Z
    Clin Biomech (Bristol, Avon); 2022 May; 95():105660. PubMed ID: 35561659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton.
    Han S; Wang H; Tian Y; Christov N
    ISA Trans; 2020 Feb; 97():171-181. PubMed ID: 31399252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning.
    Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X
    J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and motion control of exoskeleton robot for paralyzed lower limb rehabilitation.
    Zhu Z; Liu L; Zhang W; Jiang C; Wang X; Li J
    Front Neurosci; 2024; 18():1355052. PubMed ID: 38456145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive Gait Training of a Lower Limb Rehabilitation Robot Based on Human-Robot Interaction Force Measurement.
    Yu F; Liu Y; Wu Z; Tan M; Yu J
    Cyborg Bionic Syst; 2024; 5():0115. PubMed ID: 38912323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human-Robot Cooperative Strength Training Based on Robust Admittance Control Strategy.
    Lin M; Wang H; Yang C; Liu W; Niu J; Vladareanu L
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Tandem Robotic Arm Inverse Kinematic Solution Based on an Improved Particle Swarm Algorithm.
    Zhao G; Jiang D; Liu X; Tong X; Sun Y; Tao B; Kong J; Yun J; Liu Y; Fang Z
    Front Bioeng Biotechnol; 2022; 10():832829. PubMed ID: 35662837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive sliding-mode controller of a lower limb mobile exoskeleton for active rehabilitation.
    Pérez-San Lázaro R; Salgado I; Chairez I
    ISA Trans; 2021 Mar; 109():218-228. PubMed ID: 33077173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training.
    Wu Q; Wu H
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System.
    Tsai TC; Chiang MH
    Soft Robot; 2023 Feb; 10(1):1-16. PubMed ID: 35196171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digital twin rehabilitation system based on self-balancing lower limb exoskeleton.
    Wang W; He Y; Li F; Li J; Liu J; Wu X
    Technol Health Care; 2023; 31(1):103-115. PubMed ID: 35754239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive Neural Sliding-Mode Controller for Alternative Control Strategies in Lower Limb Rehabilitation.
    Yang T; Gao X
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):238-247. PubMed ID: 31603825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid active force control of a lower limb exoskeleton for gait rehabilitation.
    Taha Z; Abdul Majeed APP; Zainal Abidin AF; Hashem Ali MA; Khairuddin IM; Deboucha A; Wong Paul Tze MY
    Biomed Tech (Berl); 2018 Jul; 63(4):491-500. PubMed ID: 28809745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review of adaptive control for stroke lower limb exoskeleton rehabilitation robot based on motion intention recognition.
    Su D; Hu Z; Wu J; Shang P; Luo Z
    Front Neurorobot; 2023; 17():1186175. PubMed ID: 37465413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Learning-Based Hierarchical Control Scheme for an Exoskeleton Robot in Human-Robot Cooperative Manipulation.
    Deng M; Li Z; Kang Y; Chen CLP; Chu X
    IEEE Trans Cybern; 2020 Jan; 50(1):112-125. PubMed ID: 30183653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training.
    Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H
    Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Advanced Adaptive Control of Lower Limb Rehabilitation Robot.
    Du Y; Wang H; Qiu S; Yao W; Xie P; Chen X
    Front Robot AI; 2018; 5():116. PubMed ID: 33500995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.