BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37520741)

  • 1. The association between the incidence of Lyme disease in the USA and indicators of greenness and land cover.
    Westra S; Goldberg MS; Didan K
    Curr Res Parasitol Vector Borne Dis; 2023; 4():100132. PubMed ID: 37520741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remote sensing metrics to assess exposure to residential greenness in epidemiological studies: A population case study from the Eastern Mediterranean.
    Sadeh M; Brauer M; Dankner R; Fulman N; Chudnovsky A
    Environ Int; 2021 Jan; 146():106270. PubMed ID: 33276312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of climate variability and land cover dynamics on the spatio-temporal NDVI patterns in western hydrological regions of Bangladesh.
    Akhter J; Afroz R
    Heliyon; 2024 Jun; 10(12):e32625. PubMed ID: 38975232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vegetation greenness modelling in response to interannual precipitation and temperature changes between 2001 and 2012 in Liao River Basin in Jilin Province, China.
    Lin XS; Tang J; Li ZY; Li HY
    Springerplus; 2016; 5(1):1173. PubMed ID: 27512632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of "ever-cropped" land (1984-2010) using Landsat annual maximum NDVI image composites: Southwestern Kansas case study.
    Maxwell SK; Sylvester KM
    Remote Sens Environ; 2012 Jun; 121():186-195. PubMed ID: 22423150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of elevation and land cover dependent trends of NDVI variations in the Hexi region, northwest China.
    Han JC; Huang Y; Zhang H; Wu X
    J Environ Manage; 2019 Feb; 232():1037-1048. PubMed ID: 33395756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The association between the incidence of post-menopausal breast cancer and residential greenness.
    Wang Q; Goldberg MS; Labrèche F; Ho V
    Cancer Epidemiol; 2022 Feb; 76():102094. PubMed ID: 34995872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. County-level exposures to greenness and associations with COVID-19 incidence and mortality in the United States.
    Klompmaker JO; Hart JE; Holland I; Sabath MB; Wu X; Laden F; Dominici F; James P
    Environ Res; 2021 Aug; 199():111331. PubMed ID: 34004166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. County-level exposures to greenness and associations with COVID-19 incidence and mortality in the United States.
    Klompmaker JO; Hart JE; Holland I; Sabath MB; Wu X; Laden F; Dominici F; James P
    medRxiv; 2020 Nov; ():. PubMed ID: 32908990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in Landscape Greenness and Climatic Factors over 25 Years (1989-2013) in the USA.
    Nash MS; Wickham J; Christensen J; Wade T
    Remote Sens (Basel); 2017; 9(3):295. PubMed ID: 30505570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Climate Change on Land Cover Change and Vegetation Dynamics in Xinjiang, China.
    Yu H; Bian Z; Mu S; Yuan J; Chen F
    Int J Environ Res Public Health; 2020 Jul; 17(13):. PubMed ID: 32640654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial Pattern and Dynamic Change of Vegetation Greenness From 2001 to 2020 in Tibet, China.
    Jiang F; Deng M; Long Y; Sun H
    Front Plant Sci; 2022; 13():892625. PubMed ID: 35548309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the relationship among land surface temperature (LST), land use land cover (LULC), and normalized difference vegetation index (NDVI) with topographic elements in the lower Himalayan region.
    Ullah W; Ahmad K; Ullah S; Tahir AA; Javed MF; Nazir A; Abbasi AM; Aziz M; Mohamed A
    Heliyon; 2023 Feb; 9(2):e13322. PubMed ID: 36825192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The variation of vegetation greenness and underlying mechanisms in Guangdong province of China during 2001-2013 based on MODIS data.
    Wu Y; Tang G; Gu H; Liu Y; Yang M; Sun L
    Sci Total Environ; 2019 Feb; 653():536-546. PubMed ID: 30414583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying the relationships between water quality and land cover changes in the Tseng-Wen reservoir watershed of Taiwan.
    Chu HJ; Liu CY; Wang CK
    Int J Environ Res Public Health; 2013 Jan; 10(2):478-89. PubMed ID: 23358232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of greenness exposure on hypertension incidence among Chinese oldest-old: a prospective cohort study.
    Wensu Z; Wenjuan W; Fenfen Z; Wen C; Li L
    Environ Health; 2022 Jul; 21(1):66. PubMed ID: 35820901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstructing NDVI and land surface temperature for cloud cover pixels of Landsat-8 images for assessing vegetation health index in the Northeast region of Thailand.
    Mohanasundaram S; Baghel T; Thakur V; Udmale P; Shrestha S
    Environ Monit Assess; 2022 Dec; 195(1):211. PubMed ID: 36534216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of land cover/use changes using Landsat 5 TM data and indices.
    Ettehadi Osgouei P; Kaya S
    Environ Monit Assess; 2017 Apr; 189(4):136. PubMed ID: 28251451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal trends of NDVI and its response to climate variability in the Abbay River Basin, Ethiopia.
    Hussien K; Kebede A; Mekuriaw A; Beza SA; Erena SH
    Heliyon; 2023 Mar; 9(3):e14113. PubMed ID: 36915532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Comparison of GIMMS and MODIS normalized vegetation index composite data for Qing-Hai-Tibet Plateau].
    Du JQ; Shu JM; Wang YH; Li YC; Zhang LB; Guo Y
    Ying Yong Sheng Tai Xue Bao; 2014 Feb; 25(2):533-44. PubMed ID: 24830255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.