These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37520967)

  • 1. Suspended sediment load prediction modelling based on artificial intelligence methods: The tropical region as a case study.
    Allawi MF; Sulaiman SO; Sayl KN; Sherif M; El-Shafie A
    Heliyon; 2023 Aug; 9(8):e18506. PubMed ID: 37520967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting suspended sediment load in Peninsular Malaysia using support vector machine and deep learning algorithms.
    Essam Y; Huang YF; Birima AH; Ahmed AN; El-Shafie A
    Sci Rep; 2022 Jan; 12(1):302. PubMed ID: 34997183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suspended sediment load prediction using long short-term memory neural network.
    AlDahoul N; Essam Y; Kumar P; Ahmed AN; Sherif M; Sefelnasr A; Elshafie A
    Sci Rep; 2021 Apr; 11(1):7826. PubMed ID: 33837236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using an interpretable deep learning model for the prediction of riverine suspended sediment load.
    Mohammadi-Raigani Z; Gholami H; Mohamadifar A; Samani AN; Pradhan B
    Environ Sci Pollut Res Int; 2024 May; 31(22):32480-32493. PubMed ID: 38656723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suspended sediment load prediction using sparrow search algorithm-based support vector machine model.
    Samantaray S; Sahoo A; Satapathy DP; Oudah AY; Yaseen ZM
    Sci Rep; 2024 Jun; 14(1):12889. PubMed ID: 38839802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. River suspended sediment modelling using the CART model: A comparative study of machine learning techniques.
    Choubin B; Darabi H; Rahmati O; Sajedi-Hosseini F; Kløve B
    Sci Total Environ; 2018 Feb; 615():272-281. PubMed ID: 28982076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United States.
    Olyaie E; Banejad H; Chau KW; Melesse AM
    Environ Monit Assess; 2015 Apr; 187(4):189. PubMed ID: 25787167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iterative classifier optimizer-based pace regression and random forest hybrid models for suspended sediment load prediction.
    Meshram SG; Safari MJS; Khosravi K; Meshram C
    Environ Sci Pollut Res Int; 2021 Mar; 28(9):11637-11649. PubMed ID: 33125681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavelet and ANN combination model for prediction of daily suspended sediment load in rivers.
    Rajaee T
    Sci Total Environ; 2011 Jul; 409(15):2917-28. PubMed ID: 21546062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suspended sediment load prediction using artificial neural network and ant lion optimization algorithm.
    Banadkooki FB; Ehteram M; Ahmed AN; Teo FY; Ebrahimi M; Fai CM; Huang YF; El-Shafie A
    Environ Sci Pollut Res Int; 2020 Oct; 27(30):38094-38116. PubMed ID: 32621196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suspended sediment load prediction based on soft computing models and Black Widow Optimization Algorithm using an enhanced gamma test.
    Panahi F; Ehteram M; Emami M
    Environ Sci Pollut Res Int; 2021 Sep; 28(35):48253-48273. PubMed ID: 33904136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Random forest, support vector machine, and neural networks to modelling suspended sediment in Tigris River-Baghdad.
    Al-Mukhtar M
    Environ Monit Assess; 2019 Oct; 191(11):673. PubMed ID: 31650261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation.
    Khullar S; Singh N
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):12875-12889. PubMed ID: 33988840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating suspended sediment load with multivariate adaptive regression spline, teaching-learning based optimization, and artificial bee colony models.
    Yilmaz B; Aras E; Nacar S; Kankal M
    Sci Total Environ; 2018 Oct; 639():826-840. PubMed ID: 29803053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering the role of meteorological parameters controlling the sediment load and water discharge in the Sutlej basin, Western Himalaya.
    Kumar P; Dubey CS; Kumar O; Shekhar S; Shukla DP; Ramanathan AL
    J Environ Manage; 2021 Nov; 298():113413. PubMed ID: 34352482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of a hybrid ANN multi-objective whale algorithm for suspended sediment load prediction.
    Ehteram M; Ahmed AN; Latif SD; Huang YF; Alizamir M; Kisi O; Mert C; El-Shafie A
    Environ Sci Pollut Res Int; 2021 Jan; 28(2):1596-1611. PubMed ID: 32851519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting reservoir sedimentation using multilayer perceptron - Artificial neural network model with measured and forecasted hydrometeorological data in Gibe-III reservoir, Omo-Gibe River basin, Ethiopia.
    Lukas P; Melesse AM; Kenea TT
    J Environ Manage; 2024 May; 359():121018. PubMed ID: 38714033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial Intelligence based accurately load forecasting system to forecast short and medium-term load demands.
    Butt FM; Hussain L; Mahmood A; Lone KJ
    Math Biosci Eng; 2020 Dec; 18(1):400-425. PubMed ID: 33525099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regression models for sediment transport in tropical rivers.
    Harun MA; Safari MJS; Gul E; Ab Ghani A
    Environ Sci Pollut Res Int; 2021 Oct; 28(38):53097-53115. PubMed ID: 34023993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of suspended sediment concentration in the lower Yellow River in China based on the coupled CEEMD-NAR model.
    Zhang X; Zheng Z
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):30960-30971. PubMed ID: 36441324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.