These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37521357)

  • 1. A simulation study of in-beam visualization system for proton therapy by monitoring scattered protons.
    Sato S; Yokokawa H; Hosobuchi M; Kataoka J
    Front Med (Lausanne); 2023; 10():1038348. PubMed ID: 37521357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning proton beam range estimation model for quality assurance based on two-dimensional scintillated light distributions in simulations.
    Lee E; Cho B; Kwak J; Jeong C; Park MJ; Kim SW; Song SY; Goh Y
    Med Phys; 2023 Nov; 50(11):7203-7213. PubMed ID: 37517077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative assessment of the physical potential of proton beam range verification with PET/CT.
    Knopf A; Parodi K; Paganetti H; Cascio E; Bonab A; Bortfeld T
    Phys Med Biol; 2008 Aug; 53(15):4137-51. PubMed ID: 18635897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental depth dose curves of a 67.5 MeV proton beam for benchmarking and validation of Monte Carlo simulation.
    Faddegon BA; Shin J; Castenada CM; Ramos-Méndez J; Daftari IK
    Med Phys; 2015 Jul; 42(7):4199-210. PubMed ID: 26133619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spread-out Bragg peak proton FLASH irradiation using a clinical synchrocyclotron: Proof of concept and ion chamber characterization.
    Darafsheh A; Hao Y; Zhao X; Zwart T; Wagner M; Evans T; Reynoso F; Zhao T
    Med Phys; 2021 Aug; 48(8):4472-4484. PubMed ID: 34077590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of RACT for 3D dose measurement and range verification in a water phantom.
    Alsanea F; Moskvin V; Stantz KM
    Med Phys; 2015 Feb; 42(2):937-46. PubMed ID: 25652506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning-based in vivo dose verification from proton-induced secondary-electron-bremsstrahlung images with various count level.
    Yabe T; Yamaguchi M; Liu CC; Toshito T; Kawachi N; Yamamoto S
    Phys Med; 2022 Jul; 99():130-139. PubMed ID: 35689979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo investigation of collimator scatter of proton-therapy beams produced using the passive scattering method.
    Titt U; Zheng Y; Vassiliev ON; Newhauser WD
    Phys Med Biol; 2008 Jan; 53(2):487-504. PubMed ID: 18185001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PET/CT imaging for treatment verification after proton therapy: a study with plastic phantoms and metallic implants.
    Parodi K; Paganetti H; Cascio E; Flanz JB; Bonab AA; Alpert NM; Lohmann K; Bortfeld T
    Med Phys; 2007 Feb; 34(2):419-35. PubMed ID: 17388158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Feasibility Study on Proton Range Monitoring Using
    Islam MR; Shahmohammadi Beni M; Inamura A; Şafakattı N; Miyake M; Rahman M; Haque AKF; Ito S; Gotoh S; Yamaya T; Watabe H
    Tomography; 2022 Sep; 8(5):2313-2329. PubMed ID: 36136889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and performance evaluation of a slit-slat camera for 2D prompt gamma imaging in proton therapy monitoring: A Monte Carlo simulation study.
    Malekzadeh E; Rajabi H; Tajik-Mansoury MA; Sabouri P; Fiorina E; Kalantari F
    Med Phys; 2023 Jun; 50(6):3701-3718. PubMed ID: 36718592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo patient study on the comparison of prompt gamma and PET imaging for range verification in proton therapy.
    Moteabbed M; España S; Paganetti H
    Phys Med Biol; 2011 Feb; 56(4):1063-82. PubMed ID: 21263174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A deep learning approach for converting prompt gamma images to proton dose distributions: A Monte Carlo simulation study.
    Liu CC; Huang HM
    Phys Med; 2020 Jan; 69():110-119. PubMed ID: 31869575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct mapping from PET coincidence data to proton-dose and positron activity using a deep learning approach.
    Rahman AU; Nemallapudi MV; Chou CY; Lin CH; Lee SC
    Phys Med Biol; 2022 Sep; 67(18):. PubMed ID: 35981556
    [No Abstract]   [Full Text] [Related]  

  • 15. Systematic analysis of biological and physical limitations of proton beam range verification with offline PET/CT scans.
    Knopf A; Parodi K; Bortfeld T; Shih HA; Paganetti H
    Phys Med Biol; 2009 Jul; 54(14):4477-95. PubMed ID: 19556685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility study of using fall-off gradients of early and late PET scans for proton range verification.
    Cho J; Grogg K; Min CH; Zhu X; Paganetti H; Lee HC; El Fakhri G
    Med Phys; 2017 May; 44(5):1734-1746. PubMed ID: 28273345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ML-EM algorithm for dose estimation using PET in proton therapy.
    Masuda T; Nishio T; Kataoka J; Arimoto M; Sano A; Karasawa K
    Phys Med Biol; 2019 Sep; 64(17):175011. PubMed ID: 31307027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of beam purity and scanner complexity on proton CT accuracy.
    Piersimoni P; Ramos-Méndez J; Geoghegan T; Bashkirov VA; Schulte RW; Faddegon BA
    Med Phys; 2017 Jan; 44(1):284-298. PubMed ID: 28066887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of elemental tissue composition following proton treatment using positron emission tomography.
    Cho J; Ibbott G; Gillin M; Gonzalez-Lepera C; Min CH; Zhu X; El Fakhri G; Paganetti H; Mawlawi O
    Phys Med Biol; 2013 Jun; 58(11):3815-35. PubMed ID: 23681070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental validation of the TOPAS Monte Carlo system for passive scattering proton therapy.
    Testa M; Schümann J; Lu HM; Shin J; Faddegon B; Perl J; Paganetti H
    Med Phys; 2013 Dec; 40(12):121719. PubMed ID: 24320505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.