These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering. Canales A; Park S; Kilias A; Anikeeva P Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583 [TBL] [Abstract][Full Text] [Related]
8. Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications. Shim E; Chen Y; Masmanidis S; Li M Sci Rep; 2016 Mar; 6():22693. PubMed ID: 26941111 [TBL] [Abstract][Full Text] [Related]
9. 3D printed microfluidics: advances in strategies, integration, and applications. Su R; Wang F; McAlpine MC Lab Chip; 2023 Mar; 23(5):1279-1299. PubMed ID: 36779387 [TBL] [Abstract][Full Text] [Related]
10. A multichannel neural probe with embedded microfluidic channels for simultaneous in vivo neural recording and drug delivery. Lee HJ; Son Y; Kim J; Lee CJ; Yoon ES; Cho IJ Lab Chip; 2015 Mar; 15(6):1590-7. PubMed ID: 25651943 [TBL] [Abstract][Full Text] [Related]
11. Rapidly-customizable, scalable 3D-printed wireless optogenetic probes for versatile applications in neuroscience. Lee J; Parker KE; Kawakami C; Kim JR; Qazi R; Yea J; Zhang S; Kim CY; Bilbily J; Xiao J; Jang KI; McCall JG; Jeong JW Adv Funct Mater; 2020 Nov; 30(46):. PubMed ID: 33708031 [TBL] [Abstract][Full Text] [Related]
12. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components. Ahmed I; Sullivan K; Priye A Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047 [TBL] [Abstract][Full Text] [Related]
13. Additive 3D photonic integration that is CMOS compatible. Grabulosa A; Moughames J; Porte X; Kadic M; Brunner D Nanotechnology; 2023 May; 34(32):. PubMed ID: 37105145 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of a Monolithic Lab-on-a-Chip Platform with Integrated Hydrogel Waveguides for Chemical Sensing. Torres-Mapa ML; Singh M; Simon O; Mapa JL; Machida M; Günther A; Roth B; Heinemann D; Terakawa M; Heisterkamp A Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31597248 [TBL] [Abstract][Full Text] [Related]
15. Control of neural probe shank flexibility by fluidic pressure in embedded microchannel using PDMS/PI hybrid substrate. Rezaei S; Xu Y; Pang SW PLoS One; 2019; 14(7):e0220258. PubMed ID: 31339963 [TBL] [Abstract][Full Text] [Related]
16. Dynamic phase control with printing and fluidic materials' interaction by inkjet printing an RF sensor directly on a stereolithographic 3D printed microfluidic structure. Park E; Lim S Lab Chip; 2021 Nov; 21(22):4364-4378. PubMed ID: 34585708 [TBL] [Abstract][Full Text] [Related]
17. A survey of 3D printing technology applied to paper microfluidics. Fu E; Wentland L Lab Chip; 2021 Dec; 22(1):9-25. PubMed ID: 34897346 [TBL] [Abstract][Full Text] [Related]
18. 3D-printed optical probes for wafer-level testing of photonic integrated circuits. Trappen M; Blaicher M; Dietrich PI; Dankwart C; Xu Y; Hoose T; Billah MR; Abbasi A; Baets R; Troppenz U; Theurer M; Wörhoff K; Seyfried M; Freude W; Koos C Opt Express; 2020 Dec; 28(25):37996-38007. PubMed ID: 33379622 [TBL] [Abstract][Full Text] [Related]
19. A nanofabricated optoelectronic probe for manipulating and recording neural dynamics. Li B; Lee K; Masmanidis SC; Li M J Neural Eng; 2018 Aug; 15(4):046008. PubMed ID: 29629879 [TBL] [Abstract][Full Text] [Related]
20. Implantable microfluidics: methods and applications. Luo T; Zheng L; Chen D; Zhang C; Liu S; Jiang C; Xie Y; Du D; Zhou W Analyst; 2023 Sep; 148(19):4637-4654. PubMed ID: 37698090 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]