These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37522526)

  • 1. Pyrochlore-Type Iron Hydroxy Fluorides as Low-Cost Lithium-Ion Cathode Materials for Stationary Energy Storage.
    Baumgärtner JF; Wörle M; Guntlin CP; Krumeich F; Siegrist S; Vogt V; Stoian DC; Chernyshov D; van Beek W; Kravchyk KV; Kovalenko MV
    Adv Mater; 2023 Dec; 35(49):e2304158. PubMed ID: 37522526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Honeycomb Architecture Enables a High-Rate and Long-Life Iron (III) Fluoride-Lithium Battery.
    Wu F; Srot V; Chen S; Lorger S; van Aken PA; Maier J; Yu Y
    Adv Mater; 2019 Oct; 31(43):e1905146. PubMed ID: 31513323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudocapacitance-Enhanced Storage Kinetics of 3D Anhydrous Iron (III) Fluoride as a Cathode for Li/Na-Ion Batteries.
    Zhang T; Liu Y; Chen G; Liu H; Han Y; Zhai S; Zhang L; Pan Y; Li Q; Li Q
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Low-Strain Layered/Rocksalt Intergrown Cathode for High-Energy Li-Ion Batteries.
    Xu L; Chen S; Su Y; Shen X; He J; Avdeev M; Kan WH; Zhang B; Fan W; Chen L; Cao D; Lu Y; Wang L; Wang M; Bao L; Zhang L; Li N; Wu F
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):54559-54567. PubMed ID: 37972385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Energy Density Li-O
    Lee H; Lee DJ; Kim M; Kim H; Cho YS; Kwon HJ; Lee HC; Park CR; Im D
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17385-17395. PubMed ID: 32212667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing Reaction Pathways of Collective Substituted Iron Fluoride Electrode for Lithium Ion Batteries.
    Hwang S; Ji X; Bak SM; Sun K; Bai J; Fan X; Gan H; Wang C; Su D
    ACS Nano; 2020 Aug; 14(8):10276-10283. PubMed ID: 32639719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unravelling Li
    He J; Tao T; Yang F; Sun Z
    ChemSusChem; 2022 Aug; 15(15):e202200817. PubMed ID: 35642616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithium Iron Aluminum Nickelate, LiNi
    Muralidharan N; Essehli R; Hermann RP; Amin R; Jafta C; Zhang J; Liu J; Du Z; Meyer HM; Self E; Nanda J; Belharouak I
    Adv Mater; 2020 Aug; 32(34):e2002960. PubMed ID: 32671935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Li(x)FeF6 (x = 2, 3, 4) battery materials: structural, electronic and lithium diffusion properties.
    Schroeder M; Eames C; Tompsett DA; Lieser G; Islam MS
    Phys Chem Chem Phys; 2013 Dec; 15(47):20473-9. PubMed ID: 24173531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interface Improvement of Li
    Liu H; Li J; Feng W; Kang F
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39414-39423. PubMed ID: 34382407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controllable preparation of one-dimensional Li
    Gao Z; Zhao J; Pan X; Liu L; Xie S; Yuan H
    RSC Adv; 2021 Jan; 11(9):4864-4872. PubMed ID: 35424457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism.
    Li L; Meng F; Jin S
    Nano Lett; 2012 Nov; 12(11):6030-7. PubMed ID: 23106167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorinated High-Voltage Electrolytes To Stabilize Nickel-Rich Lithium Batteries.
    Poches C; Razzaq AA; Studer H; Ogilvie R; Lama B; Paudel TR; Li X; Pupek K; Xing W
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):43648-43655. PubMed ID: 37696006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon Nanotube-CoF2 Multifunctional Cathode for Lithium Ion Batteries: Effect of Electrolyte on Cycle Stability.
    Wang X; Gu W; Lee JT; Nitta N; Benson J; Magasinski A; Schauer MW; Yushin G
    Small; 2015 Oct; 11(38):5164-73. PubMed ID: 26224378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unlocking the Potential of Li-Rich Mn-Based Oxides for High-Rate Rechargeable Lithium-Ion Batteries.
    Yang Y; Gao C; Luo T; Song J; Yang T; Wang H; Zhang K; Zuo Y; Xiao W; Jiang Z; Chen T; Xia D
    Adv Mater; 2023 Dec; 35(52):e2307138. PubMed ID: 37689984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries.
    Wu F; Maier J; Yu Y
    Chem Soc Rev; 2020 Mar; 49(5):1569-1614. PubMed ID: 32055806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Engineering Toward Core Regions: A Smart Way to Make Applicable FeF
    Li L; Zhu J; Xu M; Jiang J; Li CM
    ACS Appl Mater Interfaces; 2017 May; 9(21):17992-18000. PubMed ID: 28489344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppressing the Voltage Decay Based on a Distinct Stacking Sequence of Oxygen Atoms for Li-Rich Cathode Materials.
    Cao S; Wu C; Xie X; Li H; Zang Z; Li Z; Chen G; Guo X; Wang X
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17639-17648. PubMed ID: 33825459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.