BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 37522816)

  • 21. Visible-Light-Induced Decarboxylative Functionalization of Carboxylic Acids and Their Derivatives.
    Xuan J; Zhang ZG; Xiao WJ
    Angew Chem Int Ed Engl; 2015 Dec; 54(52):15632-41. PubMed ID: 26509837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decarboxylative Thiolation of Redox-Active Esters to Thioesters by Merging Photoredox and Copper Catalysis.
    Xu T; Cao T; Yang M; Xu R; Nie X; Liao S
    Org Lett; 2020 May; 22(9):3692-3696. PubMed ID: 32279508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decarboxylative 1,4-carbocyanation of 1,3-enynes to access tetra-substituted allenes
    Chen Y; Wang J; Lu Y
    Chem Sci; 2021 Sep; 12(34):11316-11321. PubMed ID: 34667542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photocatalytic dual decarboxylative alkenylation mediated by triphenylphosphine and sodium iodide.
    Wang HY; Zhong LJ; Lv GF; Li Y; Li JH
    Org Biomol Chem; 2020 Aug; 18(29):5589-5593. PubMed ID: 32677630
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrophotochemical Metal-Catalyzed Enantioselective Decarboxylative Cyanation.
    Yang K; Wang Y; Luo S; Fu N
    Chemistry; 2023 Apr; 29(24):e202203962. PubMed ID: 36638008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual catalysis. Merging photoredox with nickel catalysis: coupling of α-carboxyl sp³-carbons with aryl halides.
    Zuo Z; Ahneman DT; Chu L; Terrett JA; Doyle AG; MacMillan DW
    Science; 2014 Jul; 345(6195):437-40. PubMed ID: 24903563
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Decarboxylative sp
    Liang Y; Zhang X; MacMillan DWC
    Nature; 2018 Jul; 559(7712):83-88. PubMed ID: 29925943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photoredox/Cobalt Dual-Catalyzed Decarboxylative Elimination of Carboxylic Acids: Development and Mechanistic Insight.
    Cartwright KC; Joseph E; Comadoll CG; Tunge JA
    Chemistry; 2020 Sep; 26(54):12454-12471. PubMed ID: 32449820
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photochemical iron-catalyzed decarboxylative azidation via the merger of ligand-to-metal charge transfer and radical ligand transfer catalysis.
    Kao SC; Bian KJ; Chen XW; Chen Y; Martí AA; West JG
    Chem Catal; 2023 Jun; 3(6):. PubMed ID: 37720729
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cross-Coupling of Alkyl Redox-Active Esters with Benzophenone Imines: Tandem Photoredox and Copper Catalysis.
    Mao R; Balon J; Hu X
    Angew Chem Int Ed Engl; 2018 Jul; 57(30):9501-9504. PubMed ID: 29863760
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visible-Light-Driven Iron-Catalyzed Decarboxylative C-N Coupling Reaction of Alkyl Carboxylic Acids with NaNO
    Yang S; Wang Y; Xu W; Tian X; Bao M; Yu X
    Org Lett; 2023 Dec; 25(49):8834-8838. PubMed ID: 38054743
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Decarboxylative Halogenation of Organic Compounds.
    Varenikov A; Shapiro E; Gandelman M
    Chem Rev; 2021 Jan; 121(1):412-484. PubMed ID: 33200917
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visible-Light Photoredox-Catalyzed Decarboxylative Alkylation of Heteroarenes Using Carboxylic Acids with Hydrogen Release.
    Tian WF; Hu CH; He KH; He XY; Li Y
    Org Lett; 2019 Sep; 21(17):6930-6935. PubMed ID: 31432681
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual Photoredox/Copper Catalysis for the Remote C(sp
    Bao X; Wang Q; Zhu J
    Angew Chem Int Ed Engl; 2019 Feb; 58(7):2139-2143. PubMed ID: 30589177
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Unified Approach to Decarboxylative Halogenation of (Hetero)aryl Carboxylic Acids.
    Chen TQ; Pedersen PS; Dow NW; Fayad R; Hauke CE; Rosko MC; Danilov EO; Blakemore DC; Dechert-Schmitt AM; Knauber T; Castellano FN; MacMillan DWC
    J Am Chem Soc; 2022 May; 144(18):8296-8305. PubMed ID: 35486956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photoredox/Cu-Catalyzed Decarboxylative C(sp3)-C(sp3) Coupling to Access C(sp3)-Rich gem-Diborylalkanes.
    Huang M; Sun H; Seufert F; Friedrich A; Marder TB; Hu J
    Angew Chem Int Ed Engl; 2024 May; ():e202401782. PubMed ID: 38818649
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanistic Details of Pd(II)-Catalyzed C-H Iodination with Molecular I2: Oxidative Addition vs Electrophilic Cleavage.
    Haines BE; Xu H; Verma P; Wang XC; Yu JQ; Musaev DG
    J Am Chem Soc; 2015 Jul; 137(28):9022-31. PubMed ID: 26135326
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Decarboxylative alkynylation and carbonylative alkynylation of carboxylic acids enabled by visible-light photoredox catalysis.
    Zhou QQ; Guo W; Ding W; Wu X; Chen X; Lu LQ; Xiao WJ
    Angew Chem Int Ed Engl; 2015 Sep; 54(38):11196-9. PubMed ID: 26149104
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoredox/Copper Dual-Catalyzed Benzylic C-H Esterification via Radical-Polar Crossover.
    Zhang Y; Jiang Y; Wang Y; Sun T; Meng Y; Huang Y; Lv X; Gao J; Zhang X; Zhang S; Liu S
    Org Lett; 2022 Apr; 24(14):2679-2683. PubMed ID: 35357841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination.
    Shin K; Kim H; Chang S
    Acc Chem Res; 2015 Apr; 48(4):1040-52. PubMed ID: 25821998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.